PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental study of a puncture warning system for a jack-up offshore platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the operation of jack-up offshore platforms, the complex and variable seabed geological conditions involved can lead to serious accidents, such as pile leg punctures and platform tilt. The aim of this study is to introduce an early warning method for punctures that ensures the operational safety of these platforms. To accomplish this, a real-time monitoring and controlling system is designed using a programmable logic controller that shares data from sensors measuring displacement, tilt, and pressure. In addition, an experimental device is constructed to simulate a jack-up offshore platform in order to assess the safety response of the control system. The working state of the platform under different working conditions (puncture of one independent pile, same side or diagonal piles, and three-pile linkage) is evaluated by analysing the structural motion response, including platform tilt and foundation pressure. The findings reveal that the system developed in this study accurately detects the tilt condition of the offshore platform, and can ensure the operational safety of jack-up offshore platforms.
Rocznik
Tom
Strony
61--70
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
  • School of Marine Equipment Engineering, Zhejiang International Maritime College, Zhoushan, China
autor
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
Bibliografia
  • 1. Kong V, Cassidy MJ, Gaudin C. Failure mechanisms of a spudcan penetrating next to an existing footprint. Theor Appl Mech Lett 2015. https://doi.org/10.1016/j.taml.2014.12.001.
  • 2. Jun MJ, Kim YH, Hossain MS, Cassidy MJ, Hu Y, Park SG. Geotechnical centrifuge investigation of the effectiveness of a novel spudcan in easing spudcan-footprint interactions. J Geotech Geoenviron 2020. https://doi.org/10.1061/(ASCE) GT.1943-5606.0002322.
  • 3. Fan LD, Purwana OA, Yuan Y, Duan ML, Gao J. Discrete element method for simulations of the jack-up foundation penetration. Ocean Eng 2023. https://doi.org/10.1016/j.oceaneng.2023.113884.
  • 4. Yang XQ, Wang D, Zhang SQ. Probabilistic prediction of spudcan peak penetration resistance based on parameter estimation and sectionalized adaptive linear simplification. Ocean Eng 2024. https://doi.org/10.1016/j.oceaneng.2024.117228.
  • 5. Xu J, Zhou Y, Xue QL, Liao QH, Cui GJ, Xie T, Li HY. Research on risk analysis method of jack-up drilling platform pile leg puncture. Chem Tech Fuels Oil 2023. https://doi.org/10.1007/s10553-023-01519-3.
  • 6. Xie Y, Leung CF, Chow YK. Centrifuge modelling of spudcanpile interaction in soft clay overlying sand. Geotechnique 2017. https://doi.org/10.1680/jgeot.15.P.031.
  • 7. Xie YC, Huang JT, Li XK, Tian XJ, Liu GJ, Leng DX. Experimental study on hydrodynamic characteristics of three truss-type legs of jack-up offshore platform. Ocean Eng 2021. https://doi.org/10.1016/j.oceaneng.2021.109305.
  • 8. He R, Kaynia AM, Zhang JS. A poroelastic solution for dynamics of laterally loaded offshore monopoles. Ocean Eng 2019. https://doi.org/10.1016/j.oceaneng.2019.02.068.
  • 9. Yi JT, Pan YT, Qiu ZZ, Liu F, Zhang XY, Zhang L. The postinstallation consolidation settlement of jack-up spudcan foundations in clayey seabed soils. Comput Geotech 2020. https://doi.org/10.1016/j.compgeo.2020.103611.
  • 10. Michalowski RL, Shi L. Bearing capacity of footings over twolayer foundation soils. J Geotech Geoenviron 1995. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(421).
  • 11. Wang CX, Carter JP. Deep penetration of strip and circular footings into layered clays. Int J Geomech 2002. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:2(205).
  • 12. Randolph MF, Hossain МS. Deep-penetrating spudcan foundations on layered clays: Centrifuge tests. Geotechnique 2010. https://doi.org/10.1680/geot.8.P.039.
  • 13. Hossain MS, Randolph MF. Deep-penetrating spudcan foundation on layered clays: Numerical analysis. Geotechnique 2010. https://doi.org/10.1680/geot.8.P.040.
  • 14. Zhao J, Jang BS, Duan ML, Liang CF. A finite element approach for predicting the full resistance profile of a spudcan deeply penetrating in dense sand overlying clay. Appl Ocean Res 2019. https://doi.org/10.1016/j.apor.2019.03.026.
  • 15. Zhang QY, Liu ZJ. Influence of the spudcan angle on the ultimate bearing capacity of jack-up platform. China Ocean Eng 2018. https://doi.org/10.1007/s13344-018-0050-9.
  • 16. Zhang QY, Zhang Y, Yan YQ, Liang F. Dynamic analysis of OWT foundation with large diameter monopile under transient storm loading. Ships Offshore Struc 2022. https://doi.org/10.1080/17445302.2020.1861706.
  • 17. Thomas M, Theodosis T. Hydrodynamic loads on a semisubmersible platform supporting a wind turbine under a mooring system with buoys. Pol Marit Res 2024. https://doi.org/10.2478/pomr-2024-0003.
  • 18. Wang W, Fan SM, You YX, Zhao C, Xu LQ, Wang GB, Lu ZQ. Study on the influence of chamfer perforation on heave and pitch of a single floating platform. Pol Marit Res 2023. https://doi.org/10.2478/pomr-2023-0005.
  • 19. Rozmarynowski B, Mikulski T. Selected problems of sensitivity and reliability of a jack-up platform. Pol Marit Res 2018. https://doi.org/10.2478/pomr-2018-0009.
  • 20. Rozmarynowski B. Spectral dynamic analysis of a stationary jack-up platform. Pol Marit Res 2019. https://doi.org/10.2478/pomr-2019-0005.
  • 21. Rozmarynowski B, Jesien W. Spectral response of stationary jack-up platforms loaded by sea waves and wind using perturbation method. Pol Marit Res 2021. https://doi. org/10.2478/pomr-2021-0049.
  • 22. Ghazi ZM, Abbood IS, Hejazi F. Dynamic evaluation of jack-up platform structure under wave, wind, earthquake and tsunami loads. J Ocean Eng Sci 2022. https://doi.org/10.1016/j.joes.2021.04.005.
  • 23. Xu HY, Wang W, Xie YH. Study of the hydrodynamic characteristics of anti-heave devices of wind turbine platforms at different water depths. Pol Marit Res 2024. https://doi.org/10.2478/pomr-2024-0004.
  • 24. Li JL, Xie YH, Wu WG, Zhang C. Analysis of the dynamic response of offshore floating wind power platforms in waves. Pol Marit Res 2020. https://doi.org/10.2478/pomr-2020-0062.
  • 25. IEC 61010-1: International Electro-technical Commission, Safety requirements for electrical equipment for measurement, control, and laboratory use. 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75daeaba-7275-4733-afe6-5e21b09d3d0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.