PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A technology of drinking water decontamination from radon and its decay products

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
III International Conference „Radon in the Environment” (3 ; 27-31 May 2019 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
Underground water is one of the main sources of radon for households. This article focuses on the estimation and removal of radon from underground water using the technology and inorganic sorbents developed by EKSORB Ltd., Russia for liquid radioactive waste treatment in the nuclear power industry. The article presents the results of tests of a system for the removal of radon and radon daughters from water patented by EKSORB. This is achieved by filtering water through RATZIR sorbent, followed by periodic load regeneration. Over a period of three years, the plant is successful in removing radon from the water that had an initial radon content of approximately 1500 Bq/L to less than 60 Bq/L, without releasing radon to indoor/outdoor air.
Słowa kluczowe
Czasopismo
Rocznik
Strony
67--70
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Metoils.r.o. Milady Horakove 116/109, Prague, 16 000, Czech Republic
  • EKSORB Ltd. Office 218, Build 5, 8th Marta St., Ekaterinburg, 620014, Russia
  • EKSORB Ltd. Office 218, Build 5, 8th Marta St., Ekaterinburg, 620014, Russia
  • Department of Radiochemistry and Applied Ecology Ural Federal University 19 Mira St., Yekaterinburg, 620002, Russia
  • EKSORB-Razvitie Ltd. Offi ce 334, Build 42 Bolshoy boulevard, Skolkovo Innovation Territory, 121205, Moscow, Russia
Bibliografia
  • 1. Magill, J., Pfenning, G., Dreher, R., & Soti, Z. (2012). Chart of the nuclides (KarlsruherNuclidkarte) (8th ed). Karlsruhe, Germany: Nucleonica GmbH.
  • 2. Podstawczyńska, A., & Pawlak, W. (2016). Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer. Nukleonika, 61(3), 231–237. DOI: 10.1515/nuka-2016-0039.
  • 3. Sóki, E., & Csige, I. (2016). Radon in the dry carbon dioxide spa of Mátraderecske, Hungary. Nukleonika, 61(3), 245–249. DOI: 10.1515/nuka-2016-0041.
  • 4. Seminsky, K., & Seminsky, A. (2016). Radon in underground waters of Baikal and Transbaikalia: spatialtemporal variations. Geodynamics & Tectonophysics, 7(3), 477–493. DOI: 10.5800/GT-2016-7-3-0218.
  • 5. Wieprzowski, K., Bekas, M., Waśniewska, E., Wardziński, A., & Magiera, A. (2018). Radon 222Rn in drinking water of West Pomeranian Voivodeship and KuyavianPomeranian Voivodeship, Poland. Nukleonika, 63(2), 43–46. DOI: 10.2478/nuka-2018-0005.
  • 6. Alomari, A. H., Saleh, M. A., Hashim, S., Alsayaheen, A., & Abdeldin, I. (2019). Activity concentrations of 226Ra, 228Ra, 222Rn and their health impact in the groundwater of Jordan. J. Radioanal. Nucl. Chem., 322, 7–8. DOI: 10.1007/s10967-019-06686-4
  • 7. Singh, P., Singh, P., Sahoo, B. K., & Bajwa, B. S. (2016). A study on uranium and radon levels in drinking water sources of a mineralized zone of Himachal Pradesh, India. J. Radioanal. Nucl. Chem., 309, 541–549. DOI: 10.1007/s10967-015-4629-9.
  • 8. Skeppstrom, K., & Olofsson, B. (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. Sci. Total. Environ., 367, 666–680. DOI: 10.1016/j.scitotenv.2006.02.044.
  • 9. Lopes, I., Vesterbacka, P., & Kelleher, K. (2017). Comparison of radon (Rn-222) concentration in Portugal and Finland underground waters. J. Radioanal. Nucl. Chem., 311(3), 1867–1873. DOI: 10.1007/s10967-017-5166-5.
  • 10. Semenishchev, V. S., Remez, V. P., & Voronina, A. V. (2018). Use of the Sorben-Tec system for rapid dosimetric evaluation of 222Rn level in drinking water. J. Radioanal. Nucl. Chem., 325(3), 1311–1318. DOI: 10.1007/s10967-018-6038-3.
  • 11. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientifi c Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
  • 12. United States Environmental Protection Agency (1991). Radon Measurement Proficiency (RMP) Program Handbook. Washington, D.C.: Office of Radiation Programs. (EPA 520/1-91-006).
  • 13. European Union. (2013). Council Directive 2013/51/Euratom of 22 October 2013. Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Official Journal of the European Union, 7.11.2013, L 296/12. Retrieved
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75cc5d3d-304a-4e01-8b2b-2756a2a57819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.