PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tusze spożywcze do drukowania żywności 3D: skład i właściwości reologiczne

Identyfikatory
Warianty tytułu
EN
Food grade inks for 3D food printing: composition and rheological properties
Języki publikacji
PL
Abstrakty
PL
W artykule dokonano ogólnej charakterystyki sposobu wytwarzania tuszów spożywczych stosowanych do drukowania żywności w 3D. Wskazano, że obecnie do produkcji tuszów spożywczych, które muszą spełniać ściśle określone właściwości reologiczne, używana jest ograniczona liczba składników. Przy czym ciągle testowane są nowe komponenty i układy spożywcze, jak również optymalizowane są parametry techniczne drukarek 3D. Szczególnie dobrą przydatność do druku wykazują makroskopowo jednorodne układy żelowe i emulsyjne o wysokiej tiksotropii, zawierające trójwymiarową strukturę sieciową zbudowaną z łańcuchów biopolimerów. Zwrócono także uwagę na sposoby wyznaczania podstawowych parametrów reologicznych (z użyciem reometrii rotacyjnej i oscylacyjnej) oraz mikrostrukturalnych, stosowanych do oceny tuszów spożywczych w zakresie ich drukowalności.
EN
The article characterizes the methods of producing of food inks that are used for 3D food printing. It was pointed out that currently, a limited amount of ingredients is used for the production of food inks, which must meet strictly defined rheological properties. At the same time, new components and food systems are constantly being tested as well as the technical parameters of 3D printers are being optimized. Macroscopically homogeneous gel and emulsion systems with high thixotropy, containing a three-dimensional network structure built of biopolimer chains, show particularly good suitability for printing. Attention was also paid to the methods of determining the basic rheological parameters (using rotational and oscillatory rheometry) and microstructural parameters applied to assess food inks in terms of their printability.
Rocznik
Strony
13--17
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Katedra Technologii Rybnej, Roślinnej i Gastronomicznej, Wydział Nauk o Żywności i Rybactwa, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
  • [1] Bortnowska G. 2022. ,,Effects of composition and storage time of biopolymers-based emulsion-filled gels on the retention and release of aroma compounds: Thermodynamic and kinetic studies”. Food Chemistry 382 : 132308. DOI: 10.1016/j.foodchem.2022.132308.
  • [2] Bortnowska G., A. Bartkowiak, G. Tokarczyk, S. Przybylska, R. Iwański. 2020. ,,Effects of starch type and concentration on the physicochemical properties of bilayer-stabilized oil-in-water emulsion gels enriched with β-1,3/1,6-D-glucans”. Journal of the Science of Food and Agriculture 100 : 4879-4886. DOI: 10.1002/jsfa.10548.
  • [3] Bortnowska G. 2017. ,,Emulsje spożywcze: bioskładniki, reometria rotacyjna i oscylacyjna, innowacyjne technologie”. Wydawnictwo Uczelniane Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. ISBN 978-83-7663-132-5.
  • [4] Dankar I., A. Haddarah, E.L. Fawaz, F.S. Omar, M. Pujola 2018. ,,3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology 75 : 231-242. DOI: 10.1016/j.tifs.2018.03.018.
  • [5] Derossi A., R. Caporizzi, M.O. Oral, C. Severini. 2020. ,,Analyzing the effects of 3D printing process per se on the microstructure and mechanical properties of cereal food products”. Innovative Food Science and Emerging Technologies 66 : 102531. DOI: 10.1016/j.ifset.2020.102531.
  • [6] Dong H., P. Wang, Z. Yang, X. Xu. 2023. ,,3D printing based on meat materials: Challenges and opportunities”. Current Research in Food Science 6 : 100423 DOI: 10.1016/j.crfs.2022.100423.
  • [7] Godoi F.C., S. Prakash, B.R. Bhandari. 2016. ,,3d printing technologies applied for food design: Status and prospects”. Journal of Food Engineering 179 : 44-54. DOI: 10.1016/j.jfoodeng.2016.01.025Get.
  • [8] Guo Z., Z. Li, S. Cen, N. Liang, A. Muhammad, H.E. Tahir, J. Shi, X. Huang, X. Zou. 2023. ,,Modulating hydrophilic properties of β-cyclodextrin/carboxymethyl cellulose colloid particles to stabilize Pickering emulsions for food 3D printing”. Carbohydrate Polymers 313 : 120764. DOI: 10.1016/j.carbpol. 2023.120764.
  • [9] He C., M. Zhang, C. Guo. 2020. ,,4D printing of mashed potato/purple sweet potato puree with spontaneous color change”. Innovative Food Science and Emerging Technologies 59 : 102250. DOI: 10.1016/j.ifset.2019.102250.
  • [10] Hu Y., L. Cheng, S.J. Lee, Z. Yang. 2023. ,,Formation and characterisation of concentrated emulsion gels stabilised by faba bean protein isolate and its applications for 3D food printing”. Colloids and Surfaces A: Physicochemical and Engineering Aspects 671 : 131622. DOI: 10.1016/j.colsurfa.2023.131622.
  • [11] Le H., X. Wang, Y. Wei, Y. Zhao, J. Zhang, L. Zhang. 2022. ,,Making Polyol Gummies by 3D Printing: Effect of Polyols on 3D Printing Characteristics”. Foods 11 : 874. DOI: 10.3390/foods11060874.
  • [12] Lee C.P., R. Karyapp, M. Hashimoto. 2020. ,,3D printing of milk-based product”. Royal Society of Chemistry Advances 10 : 29821. DOI: 10.1039/d0ra05035k.
  • [13] Liu Z., M. Zhang, B. Bhandari, C. Yang. 2018. ,,Impact of rheological properties of mashed potatoes on 3D printing”. Journal of Food Engineering 220 : 76-82. DOI: 10.1016/j.jfoodeng.2017.04.017Get.
  • [14] Lv Y., W. Lv, G. Li, Y. Zhong. 2023. ,,The research progress of physical regulation techniques in 3D food printing”. Trends in Food Science & Technology 133 : 231-243. DOI: 10.1016/j.tifs.2023.02.004.
  • [15] Ma Y., L. Zhang. 2022. ,,Formulated food inks for extrusion-based 3D printing of personalized foods: a mini review. Current Opinion in Food Science 44 : 100803. DOI: 10.1016/j.cofs.2021.12.012.
  • [16] Ma Y., J. Potappel, A. Chauhan,. M.A.I. Schutyser, R.M. Boom, L. Zhang. 2023a. ,,Improving 3D food printing performance using computer vision and feedforward nozzle motion control”. Journal of Food Engineering 339 : 111277. DOI: 10.1016/j.jfoodeng.2022.111277.
  • [17] Ma Y., J. Potappel, M.A.I. Schutyser, R.M. Boom, L. Zhang. 2023b ,,Quantitative analysis of 3D food printing layer extrusion accuracy: Contextualizing automated image analysis with human evaluations Quantifying 3D food printing accuracy”. Current Research in Food Science 6 : 100511. DOI: 10.1016/j. crfs.2023.100511.
  • [18] Mantihal S., R. Kobun, B.-B. Lee. 2020. ,,3D food printing of as the new way of preparing food: A review”. International Journal of Gastronomy and Food Science 22 : 100260. DOI: 10.1016/j.ijgfs.2020.100260.
  • [19] Martins J.T., A.I. Bourbon, A.C. Pinheiro, L.H. Fasolin, A.A. Vicente. 2018. ,,Protein-based structures for food applications: from macro to nanoscale. Frontiers in Sustainable Food Systems 2 : 77. DOI: 10.3389/fsufs.2018.00077.
  • [20] Montoya J., J. Medina, A. Molina, J. Gutierrez, B. Rodriguez, R. Marin. 2021. ,,Impact of viscoelastic and structural properties from starch-mango and starch-arabinoxylans hydrocolloids in 3D food printing”. Additive Manufacturing 39 : 101891 DOI: 10.1016/j.addma.2021.101891.
  • [21] Ouyang Z., Z. Juncheng, Y. Cheng, L. Chen, Y. Yang, M. Liang, H. Zhu, Y. Yu, Y. Zhang, H. Wang. 2023. ,,Triple-induced gardenia fruit extract-enriched gelatin/polysaccharides microgels for O/W emulsions, and food 3D printing”. Food Bioscience 53 : 102604. DOI: 10.1016/j.fbio.2023.102604.
  • [22] Pitayachaval P., N. Sanklong, A. Thongrak. 2018. ,,A review of 3D food printing technology”. MATEC Web of Conferences 213 : 01012. DOI: 10.1051/matecconf/201821301012 ACMME 2018.
  • [23] Rahman J.M.H., M.N.I. Shiblee, A. Kumkum, A. Khosla, M. Kawakami, H. Furukawa. 2020. ,,Rheological and mechanical properties of edible gel materials for 3D food printing technology”. Heliyon 6 : e05859 DOI: 10.1016/j.heliyon.2020.e05859.
  • [24] Ramachandraiah, K. 2021. ,,Potential development of sustainable 3D-printed meat analogues: A review”. Sustainability 13 : 938. DOI: 10.3390/su13020938.
  • [25] Ross M.M, S.V. Crowley, S. Crotty, J. Oliveira, A.P. Morrison, A.L. Kelly. 2021. ,,Parameters affecting the printability of 3D-printed processed cheese”. Innovative Food Science and Emerging Technologies 72 : 102730. DOI: 10.1016/j.ifset.2021.102730.
  • [26] Rysenaer V.B.J., S. Ahmadzadeh, F.V. Bockstaele, A. Ubeyitogullari. 2023. ,,An extrusion-based 3D food printing approach for generating alginate-pectin particles”. Current Research in Food Science 6 : 100404. DOI: 10.1016/j.crfs.2022.11.023.
  • [27] Saha D., S. Bhattacharya. 2010. ,,Hydrocolloids as thickening and gelling agents in food: a critical review”. Journal of Food Science and Technology 47 : 587-597. DOI: 10.1007/s13197-010-0162-6.
  • [28] Shen D., M. Zhang, A.S. Mujumdar, J. Li. 2023. ,,Advances and application of efficient physical fields in extrusion based 3D food printing technology”. Trends in Food Science & Technology 131 : 104-117. DOI: 10.1016/j.tifs.2022.11.017.
  • [29] Singhal S., P. Rasane, S. Kaur, U. Garba, A. Bankar, J. Singh, N. Gupta. 2020. ,,3D food printing: paving way towards novel foods”. Anais da Academia Brasileira de Ciencias 92 : e20180737. DOI: 10.1590/0001-3765202020180737.
  • [30] Voon S.L., J. An, G. Wong, Y. Zhang, C.K. Chua. 2019. ,,3D food printing: a categorized review of inks and their development”. Virtual and Physical Prototyping 14 : 203-218. DOI: 10.1080/17452759.2019.1603508.
  • [31] Vukušić Pavičić T., T. Grgić, M. Ivanov, D. Novotni, Z. Herceg, 2021. ,,Influence of flour and fat type on dough rheology and technological characteristics of 3D-printed cookies. Foods 10 : 193. DOI: 10.3390/foods10010193.
  • [32] Wang L., M. Zhang, B. Bhandari, C. Yang. 2018. ,,Investigation on fish surimi gel as promising food material for 3D printing”. Journal of Food Engineering 220 : 101-108. DOI: 10.1016/j.jfoodeng.2017.02.029.
  • [33] Wen Y., C. Chao, Q.T. Che, H.W. Kim, H.J. Park. 2023. ,,Development of plant-based meat analogs using 3D printing: Status and opportunities”. Trends in Food Science & Technology 132 : 76-92. DOI: 10.1016/j. tifs.2022.12.010.
  • [34] Wilson A., T. Anukiruthika, J.A. Moses, C. Anandharamakrishnan. 2020. ,,Customized shapes for chicken meat–based products: feasibility study on 3D-printed nuggets”. Food Bioprocess Technology 13 : 1968-1983. DOI: 10.1007/s11947-020- 02537-3.
  • [35] Yemenicioğlu A., S. Farris, M. Turkyilmaz, S. Gulec. 2020. ,,A review of current and future food applications of natural hydrocolloids”. International Journal of Food Science and Technology 55 : 1389-1406. DOI: 10.1111/ijfs.14363.
  • [36] Yousefi M., S.M. Jafari. 2019. ,,Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties”. Trends in Food Science & Technology 88 : 468-483. DOI: 10.1016/j.tifs.2019.04.015.
  • [37] Zhang L., C. Zhou, S. Xing, Y. Chen, W. Su, H. Wang, M. Tan 2023. ,,Sea bass protein-polyphenol complex stabilized high internal phase of algal oil Pickering emulsions to stabilize astaxanthin for 3D food printing”. Food Chemistry 417 : 135824. DOI: 10.1016/j.foodchem.2023.135824.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75bfd0d4-f670-4f36-8e8c-28744341b33e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.