PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the stationary thermal state of simple geometry layered structures with themperature dependent heat conductivity factors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytical-numerical method to determine the one-dimensional stationary thermal state of simple geometry multilayer structures for arbitrary dependences of heat-conductivity factors on temperature is proposed (the multilayer bodies of thermosensitive materials, referred to one of the classical orthogonal coordinate systems are considered, the thermal state caused by thermal load is characterized by a onedimensional stationary temperature field. Approbation of the methodology by studying the stationary thermal state of a two-layer cylinder is realized. The cases of existence of a closed-form analytic solutions for the nonlinear heat conduction problem are considered.
Twórcy
autor
  • Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
autor
  • Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • Lviv National Agrarian University
Bibliografia
  • 1. Rykalyn N. N. 1985. The effect of concentrated energy flows on materials. Moscow: Science, 246. (in Russian).
  • 2. Kushnir R. M., Popovych V. S. 2009. Thermoelasticity of thermosensitive solids, Lviv: SPOLOM, 412. (in Ukrainian)
  • 3. Popovych V. 2014. Methods for Determination of the Thermo-stressed State of Thermosensitive Solids Under Complex Heat Exchange Conditions. Encyclopedia of Thermal Stresses, No. 6, 2997–3008.
  • 4. Carpinteri A., Paggi M. 2008. Thermo-elastic mismatch in nonhomogeneous beams. J.Eng. Math. Vol. 61, No. 2-4, 371–384.
  • 5. Noda N. 1991.Thermal stresses in materials with temperature-dependent properties. Appl. Mech. Rev. Vol. 44, 383–397.
  • 6. Ootao Y., Tanigawa O., Ishimaru O. 2000. Optimization of material composition of functionality graded plate for thermal stress relaxation using a genetic algorithm. J. Therm. Stresses. Vol. 23, 257–271.
  • 7. Tanigawa Y., Akai T., Kawamura R. 1996. Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties. J. Therm. Stresses. Vol. 19, No. 1, 77–102.
  • 8. Tanigawa Y., Ootao Y. 2002. Transient thermoelastic analysis of functionally graded plate with temperature-dependent material properties taking into account the thermal radiation. Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu, No. 2, 133–134.
  • 9. Yangiian Xu, Daihui Tu. 2009. Analysis of steady thermal stress in a ZrO2/FGM/Ti-6Al-4V composite ECBF plate with temperature-dependent material properties by NFEM. 2009 - WASE Int. Conf. on Inform. Eng. Vol. 02, 433–436.
  • 10. Kushnir R. M., Popovych V. S. 2013. On the determination of steady-state thermoelastic state of multilayer structures under high-temperature heating. Visnyk Shevchenko Kyiv. Nats. Univ. No. 3, 42–47. (in Ukrainian).
  • 11. Kushnir R. M., Protsiuk Yu. B. 2010. Thermoelastic state of layered thermosensitive bodies of revolution for the quadratic dependence of the heat-conduction coefficients. Materials Science, Vol. 46, No. 1, 7–18. (in Ukrainian).
  • 12. Protsiuk Yu. B. 2010. Static thermoelasticity problems for thermosensitive plates with cubic dependence of heat conductivity coefficients on temperature. Mat.metody ta fiz.-mekh. polia, Vol. 53, No. 4, 151–162. (in Ukrainian).
  • 13. Makhorkin I. M., Mastykash L. V. 2015. Оn one analytical-numerical method of solution for the one-dimensional quasi-static thermoelasticity problem for thermosensitive body of simple geometry. Mat.metody ta fiz.-mekh. polia, Vol. 58, No.4, 95–106. (in Ukrainian).
  • 14. Makhorkin I. M., Makhorkin I. M., Mastykash L. V. 2016. Аnalytical-numerical determination of thermoelastic state of multilayer transtropic bodies with simple geometry. Prykl. probl. mekh. i mat. Vol. 14, 133–139. (in Ukrainian).
  • 15. Jaworski N. 2015. Effective-thermal-characteristics-synthesis-microlevel-models-in-the-problems-of-composite-materials-optimal-design. Econtechmod. an international quarterly journal, Vol. 04, No. 2, 3–12
  • 16. Podstryhach Ya. S., Lomakyn V. A., Koliano Yu. M. 1984. Thermoelasticity of bodies of non-uniform structure. Moscow: Science, 368. (in Russian).
  • 17. Lomakyn V. A. 1976. Theory of elasticity of inhomogeneous bodies. Moscow: МGU, 376. (in Russian).
  • 18. Makhorkin M., Sulym H. 2010. On determination of the stress-strain state of a multi-wedge system with thin radial defects under antiplane deformation. Civil and environmental engineering reports, Vol. 5, 235–251.
  • 19. Makhorkin M., Makhorkina T. 2017. Analytical determination of the order of stress field singularity in some configurations of multiwedge systems for the case of antiplane deformation. Econtechmod. An international quarterly journal, Vol. 6, No. 3, 45–52.
  • 20. Makhorkin I. 2018. Generalized functions in the stationary heat conduction problems for thermosensitive multilayer structures of simple geometry. Modern Problems of Mechanics and Mathematics, Vol. 1, 184-185.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75bccd97-ee67-46ec-8785-974cca50b02f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.