PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Comparison of Thermal Behaviour Between Ventilated Facades

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasingly high demands on environmental protection are intensifying the development of sustainable construction. Ventilated facades can provide an energy-efficient alternative to standard facades, that is, external thermal insulation composite systems (ETICS). The article compares standard facades, which was a reference, to ventilated facades in two variants: closed joints and open joints. The comparison was made by means of numerical simulations of computational fluid dynamic (CFD), under conditions of high outside temperature and high sunshine. The results showed great benefits of using ventilated facades in such external climate conditions. It was also observed that the selection of the variant of ventilated facade in the system of close or open joints has minimal influence on thermal efficiency of the whole partition.
Rocznik
Strony
297--305
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] ANSYS Fluent Theory Guide.
  • [2] ANSYS Fluent User’s Guide.
  • [3] Chen Q. (1995). Comparison of different κ −ε models for indoor airflow computations. Numerical Heat Transfer, Part B, 28: p. 353-369.
  • [4] Chereches, M., Chereches, N. C., Hudisteanu, S. (2015). Numerical modeling of solar radiation inside ventilated double-skin facades. International journal of heat and technology vol. 33, No.4, p. 246-254.
  • [5] Chereches M., Chereches N. C., Hudisteanu S. (2014) The influence of different flow velocities on the heat transfer inside a ventilated façade. Revista Romana de Inginerie Civila, Volumul 5, Numeral 1.
  • [6] Chui E.H., Raithby G.D. (1993). Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method. Numerical Heat Transfer, Part B 23, p. 269–288.
  • [7] Cirillo L., Di Ronza D., Fardella V., Manca O., Nardini S. (2015). Numerical and experimental investigations on a solar chimney integrated in a building façade. International Journal of Heat and Technology 33(4), p. 246-254. doi: 10.18280/ijht.330433
  • [8] EN 1991-1-5: Eurocode 1: Actions on structures - Part 1-5: General actions - Thermal actions
  • [9] EOTA ETAG 034 Part 2: Cladding Kits comprising Cladding components, associated fixings, subframe and possible insulation layer.
  • [10] Gagliano A., Nocera F., Aneli S. (2016) Thermodynamic analysis of ventilated facades under different wind conditions in summer period. Energy and Buildings 122, p. 131-139.
  • [11] González M., Blanco E., Rı´o J.L., Pistono J., San Juan C. (2008). Numerical study on thermal and fluid dynamic behaviour of an open-joint ventilated facade. PLEA 2008 – 25th Conference on Ireland.
  • [12] Griffith, B. (2006). A model for naturally ventilated cavities on the exteriors of opaque building envelopes. Presented at Simbuild 2006 Conference, Cambridge-Massachusetts, USA.
  • [13] Information from the web site: https://ec.europa.eu/eurostat/ statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption (date of issue 17-02- 2020).
  • [14] Ibañez-Puy M., Vidaurre-Arbizu M., Sacristán-Fernández J. A., Martín-Gómez, C. (2017). Opaque Ventilated Façades: Thermal and energy performance review. Renewable and Sustainable Energy Reviews, Volume 79, p. 180–191. doi: 10.1016/j.rser.2017.05.059.
  • [15] Launder B.E., Spalding D.B. (1974). The numerical computation of turbulent flows. Computer Methods. Computer Methods in Applied Mechanics and Engineering, 3, p. 269-289. doi: 10.1016/0045-7825(74)90029-2.
  • [16] Mahdavinejad M., Mohammadi S. (2018). Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate. Ukrainian Journal of Ecology, 8(1), p. 273–281. doi: 10.15421/2018_212
  • [17] Naboni E. (2007). Ventilated opaque walls - A performance simulation method and assessment of simulated performance. Seminar Notes at Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Berkeley, May 28, California, USA.
  • [18] Sanjuan C., Suárez M. J., González M., Pistono J., Blanco E. (2011). Energy performance of an open-joint ventilated facade compared with a conventional sealed cavity façade. Solar Energy 85, p. 1851-1863. doi:10.1016/j.solener.2011.04.028.
  • [19] Schabowicz K. (2018). Elewacje wentylowane Technologia Produkcji i metody badania płyt włóknisto-cementowych. Wrocław, Oficyna Wydawnicza Politechniki Wrocławskiej.
  • [20] Suárez M. J., Sanjuan C., Gutiérrez A. J., Pistono J., Blanco E. (2012). Energy evaluation of an horizontal open joint ventilated façade. Applied Thermal Engineering 37. p. 302-313
  • [21] Stazi F., Ulpiani G., Pergolini M., Magni D., Di Perna C. (2018). Experimental Comparison Between Three Types of Opaque Ventilated Facades. The Open Construction and Building Technology Journal 12, p. 296-308. doi: 10.2174/1874836801812010296.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75bc1f6c-312f-4915-b43a-1a855ce16dc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.