PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and experimental analysis of guided wave propagation in plate-like structures with sinusoidal thickness variations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Guided waves have attracted significant attention for non-destructive testing (NDT) and structural health monitoring (SHM) due to their ability to travel relatively long distances without significant energy loss combined with their sensitivity to even small defects. Therefore, they are commonly used in damage detection and localization applications. The main idea of incorporating guided waves in NDT and SHM is based on processing the received signals and appropriate interpretation of their characteristics. A great amount of research devoted to diagnostics of plate-like structures considers specimens with constant thickness, which significantly facilities the diagnostic process. In such a case the velocity is also assumed to be constant. However, the developed diagnostic methods should be applicable, especially for the structures exposed to an aggressive environment, excessive load, or unfavorable weather conditions, etc., when the probability of damage occurring is much higher. In such cases, the assumption about the uniform thickness alongside the propagation path cannot be applied in every case. Thus, the present study is focused on wave propagation in metallic plates with variable thickness. The results of theoretical, numerical and experimental investigations of antisymmetric Lamb mode propagation in aluminum plates with a sine-shaped surface are presented. In the first step, the influence of non-uniform thickness distribution on wave velocity has been described. Next, the inverse problem aimed at shape reconstruction based on time of flight (ToF) analysis and spatially varying wave velocity was solved and compared with the standard dispersion curve-fitting method.
Rocznik
Strony
art. no. e34, 2023
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80‑233, Gdańsk, Poland
autor
  • Department of Physics, Goethe University Frankfurt, 60438 Frankfurt, Germany
Bibliografia
  • 1. Mitra M, Gopalakrishnan S. Guided wave based structural health monitoring: a review. Smart Mater Struct. 2021;25(5):27.
  • 2. Bahador M, Zaimbashi A, Rahgozar R. Three-stage Lamb-wave-based damage localization algorithm in plate-like structures for structural health monitoring applications. Sig Proc. 2020;168: 107360.
  • 3. Zima B. Damage detection in plates based on Lamb wavefront shape reconstruction. Measurement. 2021;117: 109206.
  • 4. Lamb H. On waves in an elastic plate. Proc R Soc London Ser A. 1917;93:114-28.
  • 5. Radzieński M, Doliński Ł, Krawczuk M, Palacz M. Damage localization in a stiffened plate structure using a propagating wave. Mech Syst Sig Pr. 2013;39:388-95.
  • 6. Chen B-Q, Zhang X, Soares CG. The effect of general and localized corrosions on the collapse pressure of subsea pipelines. Ocean Eng. 2022;247:110719.
  • 7. Maio L, Moll J, Memmolo V, Simon J. Ultrasonic inspection for ice accretion assessment: effects on direct wave propagation in composite media. Mech Syst Sig Pr. 2022;173: 109025.
  • 8. Deng Q-T, Yang Z-C. Propagation of guided waves in bonded composite structures with tapered adhesive layer. Appl Math Modell. 2011;35:5369-81.
  • 9. Moreau L, Minonzio JG, Talmant M, Laugier P. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness. J Acoust Soc Am. 2014;135(5):2614-24.
  • 10. Cho Y. Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation. IEEE T Ultrason Fer. 2000;47(3):591.
  • 11. Predoi MV, El-Kettani MEC, Hamitouche Z, Petre CC. Guided waves in plates with linear variation of thickness. J Acoust Soc Am. 2008;123(5):3834.
  • 12. Marical P, El-Kettani MEC, Predoi MV. Guided waves in elastic plates with Gaussian section variation Experimental and numerical results. Ultrasonics. 2007;47:1-9.
  • 13. Pagneux V, Maurel A. Lamb wave propagation in elastic wave-guides with variable thickness. Proc R Soc London Ser A. 2006;462:1315-39.
  • 14. Hu Z, An Z, Kong Y, Lian G, Wang X. The nonlinear S0 Lamb mode in a plate with a linearly-varying thickness. Ultrasonics. 2019;94:102-8.
  • 15. Ech-Cherif M, El Kettani F, Luppe. A Guillet Guided waves in a plate with linearly varying thickness: experimental and numerical results. Ultrasonics. 2004;42:807-12.
  • 16. Nurmalia N, Nakamura H, Ogi M, Hirao K. Nakahata, Mode conversion behavior of SH guided wave in a tapered plate. NDT E Int. 2021;45(1):156-61.
  • 17. Moll J, Wandowski T, Malinowski P, Radzienski M, Opoka S, Ostachowicz W. Experimental analysis and prediction of antisymmetric wave motion in a tapered anisotropic waveguide. J Acoust Soc Am. 2015;138:299-306.
  • 18. Moll J. Damage localization in composite structures with smoothly varying thickness based on the fundamental antisymmetric adiabatic wave mode. Ultrasonics. 2016;71:111-4.
  • 19. Zima B, Woloszyk K, Garbatov Y. Corrosion degradation monitoring of ship stiffened plates using guided wave phase velocity and constrained convex optimization method. Ocean Eng. 2022;253: 111318.
  • 20. Kabanikhin SI. Definitions and examples of inverse and ill-posed problems. J Inverse Ill Posed Probl. 2008;16:317-57.
  • 21. Champeney DC. A Handbook of Fourier Theorems. University of East Anglia: Cambridge University Press; 1987.
  • 22. Neuschwander K, Moll J, Memmolo V, Schmidt M, Bucker M. Simultaneous load and structural monitoring of a carbon fiber rudder stock: experimental results from a quasi-static tensile test. J Intell Mater Syst Struct. 2019;30:272-82.
  • 23. Xu B, Yu L, Giurgiutiu V. Advanced methods for time-of-flight estimation with application to Lamb wave structural health monitoring, The 7th International Workshop on Structural Health Monitoring. Palo, Alto, CA: Stanford University; 2009.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75bbff1c-e81e-4a47-8ceb-863275ec188a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.