PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation evaluation of the influence of selected geometric parameters on the operation of the pneumatic braking system of a trailer with a differential valve

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents simulation models of trailer air brake systems in configurations without a valve and with a differential valve, thus demonstrating the rationale for using a valve to improve system performance. Simplified mathematical models using the lumped method for systems without and with a differential valve are presented. The proposed valve can have two states of operation depending on the configuration of relevant parameters. These parameters can include the length of the control pipe, the throughput between chambers in the control part of the valve and the forcing rise time. Based on the calculations, it was found that the differential valve with large control pipe lengths can reduce the response time of the actuator by 42.77% relative to the system without the valve. In the case of transition of the valve to the tracking action, this time increases only by 9.93%. A force rise time of 0.5 s causes the transition of the valve from the accelerating action to the tracking action, with 9.23% delay relative to the system without a valve. The calculations can be used in the preliminary assessment of the speed of operation of pneumatic braking systems and in the formulation of guidelines for the construction of a prototypical differential valve. In conclusion, it is suggested to use a mechatronic system enabling smooth adjustment of the flow rate between chambers of the control system of the differential valve.
Rocznik
Strony
233--241
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. 45C Wiejska, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. 45C Wiejska, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. 45C Wiejska, 15-351 Bialystok, Poland
Bibliografia
  • 1. Kamiński Z, Kulikowski K. Determination of the functional and service characteristics of the pneumatic system of an agricultural tractor with mechanical brakes using simulation methods. Eksploatacja i Niezawodność - Maintenance and Reliability. 2015;17(3):355–64.
  • 2. Regulation No 13 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles of categories M, N and O with regard to braking [Internet]. Official Journal of the European Union. 2015 [cited 2022 Apr 3]. Available from: http://data.europa.eu/eli/reg/2016/194/oj
  • 3. Krichel S V, Sawodny O. Dynamic modeling of pneumatic transmission lines in Matlab/Simulink. In: International Conference on Fluid Power and Mechatronics - 17-20 Aug 2011, Beijing, China. Beijing, China: IEEE; 2011. p. 24–9.
  • 4. Kulesza Z, Siemieniako F, Mikołajczyk B. Modelowanie zaworu przekaźnikowo-sterującego. Pneumatyka. 2008;1:31–5.
  • 5. Kamiński Z. Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes. Eksploatacja i Niezawodność - Maintenance and Reliability. 2014;16(4):637–43.
  • 6. Kulesza Z, Siemieniako F. Modeling the air brake system equipped with the brake and relay valves. Zeszyty Naukowe. 2010;24(96): 5–11.
  • 7. Beater P. Pneumatic Drives. System Design, Modelling and Control. Springer; 2007.
  • 8. Miatluk M, Avtuszko F. Dinamika pnievmaticeskich i gidravliceskich privodov avtomobilej. M. Maszinostrojenije; 1980. 231 p.
  • 9. Szpica D. Modeling of the operation of a pneumatic differential valve increasing the efficiency of pneumatic brake actuation of road trains. In: Transport Means - Proceedings of the International Conference. 2018. p. 151–6.
  • 10. Mystkowski A. Zastosowanie zaworów różniczkujących w pneumatycznych układach napędowych. Pneumatyka. 2004;3:21–3.
  • 11. Patil JN, Palanivelu S, Jindal AK. Mathematical model of dual brake valve for dynamic characterization. In: SAE Technical Papers. SAE International; 2013.
  • 12. Jing Z, He R. Electronic structural improvement and experimental verification of a tractor-semitrailer air brake system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020 Jul 1;234(8):2154–61.
  • 13. Yang Z, Cheng X, Zheng X, Chen H. Reynolds-Averaged Navier-Stokes Equations Describing Turbulent Flow and Heat Transfer Behavior for Supercritical Fluid. Journal of Thermal Science. 2021;30(1).
  • 14. Matyushenko AA, Garbaruk A V. Adjustment of the k-ω SST turbulence model for prediction of airfoil characteristics near stall. In: Journal of Physics: Conference Series. 2016.
  • 15. Yu W, Yang W, Zhao F. Investigation of internal nozzle flow, spray and combustion characteristics fueled with diesel, gasoline and wide distillation fuel (WDF) based on a piezoelectric injector and a direct injection compression ignition engine. Applied Thermal Engineering. 2017;114.
  • 16. Michalcová V, Kotrasová K. The numerical diffusion effect on the cfd simulation accuracy of velocity and temperature field for the application of sustainable architecture methodology. Sustainability (Switzerland). 2020;12(23):10173.
  • 17. Cvetkovic D, Cosic I, Subic A. Improved performance of the electromagnetic fuel injector solenoid actuator using a modelling approach. International Journal of Applied Electromagnetics and Mechanics. 2008;
  • 18. Szpica D, Mieczkowski G, Borawski A, Leisis V, Diliunas S, Pilkaite T. The computational fluid dynamics (CFD) analysis of the pressure sensor used in pulse-operated low-pressure gas-phase solenoid valve measurements. Sensors. 2021;21(24):8287.
  • 19. Subramanian SC, Darbha S, Rajagopal KR. Modeling the pneumatic subsystem of an s-cam air brake system. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2004;126(1):36–46.
  • 20. Kumar EA, Gautam V, Subramanian SC. Performance evaluation of an electro-pneumatic braking system for commercial vehicles. In: ICPCES 2012 - 2012 2nd International Conference on Power, Control and Embedded Systems. 2012.
  • 21. Afshari A, Specchia S, Shabana AA, Caldwell N. A train air brake force model: Car control unit and numerical results. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2013;227(1):38–55.
  • 22. Aboubakr AK, Volpi M, Shabana AA, Cheli F, Melzi S. Implementation of electronically controlled pneumatic brake formulation in longitudinal train dynamics algorithms. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2016;230(4):505–26.
  • 23. Kamiński Z. A simplified lumped parameter model for pneumatic tubes. Mathematical and Computer Modelling of Dynamical Systems. 2017;23(5):523–35.
  • 24. Iwaszko J. Wymiana ciepła podczas opróżniania zbiornika. Zeszyty Naukowe Politechniki Łódzkiej, Cieplne Maszyny Przepływowe. 1988;93:12–21.
  • 25. Grymek S, Kiczkowiak T. Conversion of the sonic conductance C and the critical pressure ratio b into the airflow coefficient μ. Journal of Mechanical Science and Technology. 2005;19(9):1706–10.
  • 26. Yang WY, Cao W, Chung T-S, Morris J. Applied Numerical Methods Using MATLAB®. Applied Numerical Methods Using MATLAB®. Wiley & Sons; 2020. 1–502 p.
  • 27. Shamdani AH, Shameki AH, Basharhagh MZ, Aghanajafi S. Modeling and simulation of a diesel engine common rail injector in Matlab/Simulink. In: 14 th Annual (International) Mechanical Engineering Conference – May 2006 Isfahan University of Technology, Isfahan, Iran. 2006. p. 7.
  • 28. Demarchi A, Farçoni L, Pinto A, Lang R, Romero R, Silva I. Modelling a solenoid’s valve movement. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018.
  • 29. Kamiński Z. Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems. International Journal of Heavy Vehicle Systems. 2013;20(4):289–311.
  • 30. Czaban J, Kamiński Z. Diagnosing of the agricultural tractor braking system within approval tests. Eksploatacja i Niezawodność - Maintenance and Reliability. 2012;14(4):319–26.
  • 31. Hung NB, Lim O, Yoon S. Effects of Structural Parameters on Operating Characteristics of a Solenoid Injector. In: Energy Procedia. 2017. p. 1771 – 1775.
  • 32. Plavec E, Ladisic I, Vidovic M. The impact of coil winding angle on the force of DC solenoid electromagnetic actuator. Advances in Electrical and Electronic Engineering. 2019;17(3):244–50.
  • 33. Mieczkowski G, Szpica D, Borawski A, Diliunas S, Pilkaite T, Leisis V. Application of smart materials in the actuation system of a gas injector. Materials. 2021;14(22):6984.
  • 34. Mieczkowski G. Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoelectric layers. Acta Mechanica et Automatica. 2019;13(1):30–6.
  • 35. Liu Y. Modeling abstractions of vehicle suspension systems supporting the rigid body analysis. International Journal of Vehicle Structures and Systems. 2010;2(3–4):117–26.
  • 36. Liu Y. Constructing equations of motion for a vehicle rigid body model. SAE International Journal of Passenger Cars - Electronic and Electrical Systems. 2009;1(1):1289–97.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75bbf94b-3622-4f48-a406-4745b6b693ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.