PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FPGA-based control of output voltage of SRG drive system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an FPGA-based output voltage control system of a fourphase switched reluctance generator above base speed. The presented control strategy uses a digital PI controller to vary turn-off angle at fixed turn-on angle under single-pulse mode. Simulation tests were conducted based on the simulation model built in the Matlab/Simulink environment. The results of the simulation and laboratory tests as waveforms of voltages and currents are presented. Based on the presented control system, the dependencies of overall efficiency in the function of turn-on angle and ratio of output power to rms phase current (Pout av=Iph rms) in the function of turn-on angle were determined. They allow for the selection of a proper value of turn-on angle for the optimal performance of the generator during the output voltage control. The results obtained from laboratory and simulation tests are discussed in the conclusions.
Rocznik
Strony
95--108
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wz.
Twórcy
autor
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology Wincentego Pola 2, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Miller T.J.E., Electronic Control of Switched Reluctance Machines, Newnes (2001).
  • [2] Rahmanian E., Akbari H., Sheisi G.H., Maximum Power Point Tracking in Grid ConnectedWind Plant by Using Intelligent Controller and Switched Reluctance Generator, IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1313–1320 (2017).
  • [3] Urase K., Yabu N., Kiyota K., Sugimoto H., Chiba A., Takemoto M., Ogasawara S., Hoshi N., Energy Efficiency of SR and IPM Generators for Hybrid Electric Vehicle, IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 2874–2883 (2015).
  • [4] Boldea I., Tutelea L.N., Parsa L., Dorrell D., Automotive Electric Propulsion Systems With Reduced or No Permanent Magnets: An Overview, IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5696–5711 (2014).
  • [5] Ze Q., Kou P., Liang D., Liang Z., Fault-tolerant performances of switched reluctance machine and doubly salient permanent magnet machine in starter/generator system, 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, pp. 3417–3423 (2014).
  • [6] Nasirian V., Kaboli S., Davoudi A., Output Power Maximization and Optimal Symmetric Freewheeling Excitation for Switched Reluctance Generators, IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1031–1042 (2013).
  • [7] Sikder Ch., Husain I., Sozer Y., Switched Reluctance Generator Control for Optimal Power Generation with Current Regulation, IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 307–316 (2013).
  • [8] Stumpf A., Elton D., Devlin J., Lovatt H., Benefits of an FPGA based SRM controller, Industrial Electronics and Applications (ICIEA), Hangzhou, China, pp. 12–17 (2014).
  • [9] Menghal P.M., Jaya Laxmi A., Real time control of electrical machine drives: a review, Power, Control and Embedded Systems (ICPCES), Allahabad, India, pp. 1–6 (2010).
  • [10] Monmasson E., Bahri I., Idkhajine L., Maalouf A., Naouar W.M., Recent advancements in FPGAbased controllers for AC Drives Applications, 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, pp. 8–15 (2012).
  • [11] Dwijasish D., Kumaresan N., Nayanar V., Navin Sam K., Ammasai Gounden N., Development of BLDC Motor-Based Elevator System Suitable for DC Microgrid, IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1552–1560 (2016).
  • [12] Silveira A.W.F.V., Andrade D.A., Fleury A.V.S., Gomes L.C., Bissochi C.A., Dias R.J., Generated Voltage Control of the SRM operating as motor/generator, Brazilian Power Electronics Conference, Bonito, Brasil, pp. 830–835 (2009).
  • [13] Tomczewski K., Wróbel K., Improved C-dump converter for switched reluctance motor drives, IET Power Electronics, vol. 7, no. 10, pp. 2628–2635 (2014).
  • [14] Stando D., Chudzik P., Moradewicz A., Miśkiewicz R., Kaźmierkowski M.P., DSP-FPGA Based Computing Platform for Control of Power Electronic Converter, Przegla˛d Elektrotechniczny, vol. 91, no. 12, pp. 1–6 (2015).
  • [15] Tarczewski T., Grzesiak L.M., Wawrzak A., Karwowski K., Erwiński K., A state-space approach for control of NPC type 3-level sine wave inverter used in FOC PMSM drive, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 62, no. 3, pp. 439–448 (2014).
  • [16] Guojun Y., Lei M., He C., Hao C., Yingjie H., Research on the Control Strategy of Switched Reluctance Generator System, International Power Electronics and Application Conference and Exposition, Shanghai, China, pp. 1242–1247 (2014).
  • [17] Fernando W.U.N., Barnes M., Marjanovic O., Excitation Control and Voltage Regulation of Switched Reluctance Generators above Base Speed Operation, IEEE Vehicle Power and Propulsion Conference, Chicago, USA, pp. 1–6 (2011).
  • [18] Kioskeridis I., Mademlis C., Optimal Efficiency Control of Switched Reluctance Generators, IEEE Transactions of Power Electronics, vol. 21, no. 4, pp. 1062–1072 (2006).
  • [19] Bogusz P., The novel control method of switched reluctance generator, Archives of Electrical Engineering, vol. 66, no. 2, pp. 409–422 (2017).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75ba7b77-57d8-4d0e-ab33-0e61ffb79148
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.