Identyfikatory
Warianty tytułu
Sterowanie predykcyjne prądu dla synchronicznego silnika reluktancyjnego - analiza tętnień prądu
Języki publikacji
Abstrakty
The paper presents a finite control set model predictive current control FCS-MPC for reluctance synchronous motor (RSM). A detailed mathematical description of the maximum range of current ripple amplitude is presented, taking into account the most accurate model of a synchronous reluctance motor containing four inductance components. The experimental studies carried out indicate the correct analytical mathematical model to determine the amplitude of current ripples, both for low and high switching frequencies of the SiC MOSFET’s.
W artykule przedstawiono sterowanie predykcyjne prądami synchronicznego silnika reluktancyjnego. Przedstawiono szczegółowy opis matematyczny pozwalający na wyliczenie maksymalnego zakresu tętnień prądu, z uwzględnieniem najdokładniejszego modelu synchronicznego silnika reluktancyjnego zawierającego cztery składowe indukcyjności. Przeprowadzone badania eksperymentalne wskazują na poprawny analityczny model matematyczny w celu wyznaczenia amplitudy tętnień prądu, zarówno dla niskich jak i wysokich częstotliwości kluczowania tranzystorów przekształtnika.
Wydawca
Czasopismo
Rocznik
Tom
Strony
19--24
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Nicolaus Copernicus University in Torun, Insitute of Engineering and Technology
autor
- Nicolaus Copernicus University in Torun, Insitute of Engineering and Technology
Bibliografia
- [1] T. Tarczewski, Ł. Niewiara, L.M. Grzesiak, "Artificial Neural Network-Based Gain-Scheduled State Feedback Speed Controller for Synchronous Reluctance Motor", Power Electronics and Drives, vol. 6, no. 1, pp.276–288, 2021
- [2] H.A.A.Awan, S.E. Saarakkala, M. Hinkkanen, "Flux-Linkage Based Current Control of Saturated Synchronous Motors," IEEE Trans. Ind. Applicat., vol. 55, no. 5, pp. 4762–4769, 2019, doi: 10.1109/TIA.2019.2919258.
- [3] Sustainable Transport, Electrifying the powertrains of industrial vehicles, transportation and marine - ABB white paper
- [4] S. Yamamoto, K. Tomishige, T. Ara, "A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation," in Proc. 14th IAS Annual Meeting Conf. IA Conf., Hong Kong, China, 2005, pp. 1754–1761 Vol. 3, doi: 10.1109/IAS.2005.1518684.
- [5] A.Niedworok, Ł. Orzech, "Assessment of efficiency of drive equipped with induction motor and drive equipped with reluctance motor", Przeglad Elektrotechniczny, R. 92 NR 8/2016 (in Polish)
- [6] I. Boldea, L. Tutelea, "Reluctance Electric Machines: Design and Control", CRC Press, 2018
- [7] T. Tarczewski, L.J. Niewiara, L.M. Grzesiak, "Gain-Scheduled State Feedback Speed Control of Synchronous Reluctance Motor," in Proc. IEEE 19th Int. PEMC Conf., Gliwice, Poland, 2021, pp. 559–565, doi: 10.1109/PEMC48073.2021.9432549.
- [8] N.Manuel, N. ˙Inanç, "Sliding Mode Control-Based MPPT and Output Voltage Regulation of a Stand-alone PV System", Power Electronics and Drives, vol. 7, no. 1, 2022, pp. 159–173.
- [9] X.Zhang, L. Sun, K. Zhao, L. Sun, "Nonlinear Speed Control for PMSM System Using Sliding-Mode Control and Disturbance Compensation Techniques," IEEE Trans. Pow. Electron., vol. 28, no. 3, pp. 1358–1365, 2013, doi: 10.1109/TPEL.2012.2206610.
- [10] H.Wang, H. Zhang, "An Adaptive Control Strategy for a Low Ripple Boost Converter in BLDC Motor Speed Control", Power Electronics and Drives, vol. 6, no. 1, 2021, pp.242–259.
- [11] A.Farhan, M. Abdelrahem, A. Saleh , A. Shaltout, R. Kennel, "Simplified Sensorless Current Predictive Control of Synchronous Reluctance Motor Using Online Parameter Estimation", Energies 2020, 13, 492.
- [12] F. Wang, X. Mei, J. Rodriguez, R. Kennel, "Model predictive control for electrical drive systems-an overview," CES Trans. on Electrical Machines and Systems, vol. 1, no. 3, pp. 219-230, 2017, doi: 10.23919/TEMS.2017.8086100.
- [13] K.Wróbel, P. Serkies, K. Szabat, "Model Predictive Base Direct Speed Control of Induction Motor Drive-Continuous and Finite Set Approaches", Energies 2020, 13, 1193.
- [14] R.Surus, Ł.J. Niewiara, T.Tarczewski, "A computationally efficient finite control set model predictive current control for reluctance synchronous motor", Przegl ˛ad Elektrotechniczny, 2023, Vol.99 Issue 5, p243-250.
- [15] Y. Yamamoto, S. Morimoto, M. Sanada, Y. Inoue, "Torque Ripple Reduction Using Asymmetric Flux Barriers in Synchronous Reluctance Motor," in Proc. Int. IPEC-Niigata 2018-ECCE Asia Conf., Niigata, Japan, 2018, pp. 3197–3202, doi: 10.23919/IPEC.2018.8507655.
- [16] R.Surus, M. Tejer, Ł.J. Niewiara, T. Tarczewski, "An Impact of Model Accuracy on Control Performance in Finite Control Set Model Predictive Current Control for Reluctance Synchronous Motor", 36th International Conference on Electrical Drives and Power Electronics (EDPE 2023), The High Tatras, Slovakia
- [17] D. Peftitsis and J. Rabkowski, "Gate and Base Drivers for Silicon Carbide Power Transistors: An Overview," in IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7194-7213, Oct. 2016, doi: 10.1109/TPEL.2015.2510425.
- [18] T. Tarczewski, M. Skiwski, L. M. Grzesiak, M. Zieli´nski (3918) PMSM Servo-Drive Fed by SiC MOSFETs Based VSI. Power Electronics and Drives,3(1) 35-45.
- [19] G. Grandi and J. Loncarski, "Evaluation of current ripple am plitude in three-phase PWM voltage source inverters," 2013 International Conference-Workshop Compatibility And Power Electronics, Ljubljana, Slovenia, 2013, pp. 156-161, doi: 10.1109/CPE.2013.6601146.
- [20] G.Grandi and J. Loncarski, "Evaluation of current ripple amplitude in five-phase PWM voltage source inverters," Eurocon 2013, Zagreb, Croatia, 2013, pp. 1073-1080, doi: 10.1109/ EUROCON.2013.6625114.
- [21] R.Surus, L.J. Niewiara, T. Tarczewski, L.M. Grzesiak, "Finite control set model predictive current control for reluctance synchronous motor," in Proc. IEEE 20th Int. PEMC Conf., Brasov, Romania, 2022, pp. 235–242, doi: 10.1109/PEMC51159.2022.9962908.
- [22] H.Mahmoud, G. Bacco, M. Degano, N. Bianchi, C. Gerada, "Synchronous Reluctance Motor Iron Losses: Considering Machine Nonlinearity at MTPA, FW, and MTPV Operating Conditions," IEEE Trans. Energy Convers, vol. 33, no. 3, pp. 1402–1410, 2018, doi: 10.1109/TEC.2018.2811543.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75b4a294-7cf4-4bce-98d9-c179ba506b3a