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Abstract This paper investigates the relationship between colorization and pseudo-colorization tech-
niques for converting grayscale images to color. Colorization strives to create visually believable color
versions of monochrome images, either replicating the original colors or generating realistic, alternative
color schemes. In contrast, pseudo-colorization maps grayscale intensities to pre-defined color palettes
to improve visual appeal, enhance content understanding, or aid visual analysis. While colorization is an
ill-posed problem with infinitely many RGB solutions, pseudo-colorization relies on mapping functions
to deterministically assign colors. This work bridges these techniques by exploring the two following op-
erations: first – deriving pseudo-color from colorized images – this allows for creating stylized or abstract
representations from existing colorizations, and second – enriching color diversity in pseudo-colored im-
ages – this enhances visual appeal and attractiveness of pseudo-colored images. The paper emphasizes
the centrality of decolorization (rgb-to-gray) models in both processes. It focuses on the theoretical
underpinnings of these problems but complements them with illustrative examples for clarity.

Keywords: colorization, pseudo-colorization, decolorization, rgb-to-gray models, color maps, random-
ized flood-fill.

1. Introduction and motivation

While both (re)colorization and pseudo-colorization aim to create color versions of mo-
nochrome images, their approaches, complexities, and applications differ significantly.

Colorization is the process of converting monochrome images into visually convincing
color-rich counterparts. In the case of recolorization, the goal is to replicate the original
colors of the image, even though they are unknown to the algorithm, e.g. [3, 6, 16, 18,
22, 23], etc. Alternatively, the objective is to create realistic-looking hypothetical color
versions of grayscale images, representing worlds that might not have originally been in
color, e.g. [10, 25].

This field holds significant practical and commercial value, particularly in restoring
historical photos and movies. Over the past two decades, researchers have proposed
numerous and diverse (re)colorization algorithms. However, a fundamental challenge of
colorization is its inherent ambiguity. There are infinitely many valid RGB combinations
that, when converted back to grayscale, would appear identical.

Thus, colorization techniques typically leverage human knowledge and expectations
to guide the algorithms, [22]. Early methods relied on providing reference color im-
ages [5,7] or manual coloring (scribbling) of specific image regions [11,13]. Recently, deep
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Fig. 1. Two grayscale images (from a popular SUN dataset [21] and an IR image) and their exemplary
colorizations. The results are produced by a method outlined in [24,25] (i.e., without the use of
training data, AI tools, semantic analysis, human assistance, etc.).

learning approaches have become dominant, with neural networks designed to learn color
patterns suitable for specific domains, semantics, or content, [3, 23]. Some techniques
additionally incorporate recognition or learning of image domains or objects to further
enhance colorization, e.g., [6, 18].

While some papers claim fully automatic (re)colorization, e.g. [10, 19], they often
still rely on implicit human color knowledge through training datasets and semantic
identification mechanisms. In contrast, our recent works [24, 25] propose a mechanism
for truly automatic image colorization, entirely without human intervention, training
data, learning processes, or semantic analysis. This approach specifically targets images
from domains where original color versions likely never existed.

Fig. 1 summarizes this concept by showcasing grayscale images with various colorized
options for each. For the first image (from the real world), one result might resemble
the actual colors, although the ground-truth is unknown.

Unlike colorization, pseudo-colorization is a simpler process. It assigns a pre-defined
color map to image intensities. The key challenge lies in selecting or designing this
mapping function to achieve specific goals, such as enhancing visual appeal, improving
content perception, or facilitating the visual analysis of objects or processes within the
image, e.g. [9, 12,15,20].

There are a number of standard color maps, commonly referred to as hot, warm,
rainbow, springtime, jet, sine, etc. (see [1, 15, 17]). Examples are given in Figs. 2 and 3.
They are often used in typical applications of pseudo-coloring, including thermography,
roentgenography or geographical visualizations.
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(a) (b)

(c) (d)

Fig. 2. Some popular color maps used for pseudo-colorization: (a) hot, (b) jet, (c) sine and (d) warm.

Fig. 3. Two grayscale images and their exemplary pseudo-colorizations obtained by using the corre-
sponding color maps from Fig. 2 (compare to Fig. 1).

Finally, it should be noted that in this paper, we do not consider the so-called pseudo-
coloring problem (PsCP), which, despite its similar name, is a significantly different
task. PsCP involves segmenting a monochrome image into regions and the objective is
to assign a set of colors to these regions, with the colors being as visually distinct as
possible (e.g., [2, 14]).

Colorization can yield infinitely many valid results for a single grayscale image, while
pseudo-colorization produces unambiguous colors based on a pre-defined mapping func-
tion. This paper bridges the gap between these two seemingly distinct color-rendering
techniques. We aim to explore how to transform colorized images into pseudo-colored
ones and vice versa, while preserving the overall color perception of the image. Notably,
these methods should be generalizable, functioning across various image content and
characteristics.

To our knowledge, no prior research has investigated these connections between col-
orization and pseudo-colorization. We believe this exploration holds significant potential,
driven not only by practical applications but also by sheer scientific curiosity.

To that end, Section 2 presents formal models of image decolorization and colorization

Machine GRAPHICS & VISION 32(3/4):65–82, 2023. DOI: 10.22630/MGV.2023.32.3.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.4


68 Relationships between colorization and pseudo-colorization. . .

(both regular colorization and pseudo-colorization). In particular, for regular coloriza-
tion, we revisit models proposed in [24,25].

In Section 3, the easier problem of converting colorized images into the most similar
pseudo-color equivalents is discussed. This operation can be used, for example, to create
a more abstract or stylized representation of an image.

The more complex task of transforming pseudo-colored images into visually similar
(though, obviously, with much richer colorization effects) fully-colorized images is pre-
sented in Section 4. Such operations may be required if we intend to make pseudo-colored
images more aesthetically pleasing and visually engaging.

In the final Section 5, we summarize the paper and link its outcomes to the related
problems of image processing and computer graphics.

Finally, it should be highlighted that this paper presents improved and updated
materials originally presented at the 9th Conference on Symbiosis of Technology and IT
(SIT) in Kiry, June 2023. It is important to note that these materials have not been
previously published.

2. Formal models

2.1. Models of image decolorization

Given a monochrome image, we may want to know what decolorization (rgb-to-gray)
models describe the conversion of the color original (possibly not even existing) into the
grayscale results.

For rendering digital images, the RGB/sRGB color models are universally adopted,
and the intensities I of decolorized images are usually defined by linear functions of
primary colors, mainly by the Y channel of the YUV (or YIQ) models:

I = 0.299 R + 0.587 G + 0.114 B (1)

Alternatively, another set of coefficients can be used almost equivalently, as recom-
mended in [8]:

I = 0.2126 R + 0.7152 G + 0.0722 B (2)

The advantage of Eqs. (1) and (2) is that they take human perception into account, and
the perceived brightness of resulting grayscale images looks very similar to the brightness
of color originals (see examples in Figs. 4b, c).

However, if we assume that original color images do not exist (i.e., the ground-
truth colors are unspecified), we can use any set of rgb-to-gray coefficients (satisfying
kR + kG + kB = 1) to ‘decolorize’ the hypothetical color sources:

I = kRR + kGG + kBB (3)
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(a) (b) (c) (d) (e)

Fig. 4. A color image and its monochrome counterparts obtained by Eq.1 (b), Eq.2 (c), and by Eq.3
with two random sets of coefficients, [0.14, 0.11, 0.75] in (d) and [0.44, 0.14, 0.42] in (e).

In case of actual color images, their monochrome counterparts obtained by using (3)
may sometimes look strange when compared to the original images (see Figs. 4d, e))
but, nevertheless, they are visually convincing.

Thus, applying (3) with different coefficients [kR, kG, kB ] allows us to generate an
infinite spectrum of monochrome versions of a color image. This might seem counter-
intuitive, but it aligns with the concept of having infinite RGB combinations that can
create a single grayscale image.

Actually, decolorization models are the backbone of other methods discussed in this
paper. Their equations indirectly define the colorization results (Subsection 2.3), they
are instrumental in converting color images into pseudo-colored ones (Section 3), and in
the operation of rich colorization of pseudo-colored images (Section 4).

2.2. Models of pseudo-colorization

Pseudo-colorization models are defined by vector-functions (color maps) of the grayscale
intensities I :

R = R(I), G = G(I), B = B(I) (4)

where the [0 : 1] range is generally assumed for the intensities and (subsequently) for the
color values.

For the exemplary sine model the equations are as follows:

R(I) = −0.5 cos(πI) + 0.5, G(I) = sin(πI), B(I) = 0.5 cos(πI) + 0.5, (5)

with more examples of color map equations available in [1, 15].
It can be observed that the color map equations define parametric curves within the

RGB unit cube. The curves start at [R(0), G(0), B(0)] and terminate at [R(1), G(1),
B(1)]. Normally, the colors assigned to intensities change incrementally, i.e., the curves
are continuous. Shapes of such curves for exemplary color maps are given in Fig. 5.
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(a) (b) (c) (d)

Fig. 5. Curves defined within the RGB cube by exemplary color mapping functions: (a) hot, (b) jet,
(c) sine and (d) warm.

In some tasks, we may want pseudo-colorization results that preserve the perceived
brightness of the original monochrome images. To that end, a color Cu = [Ru, Gu, Bu]
assigned to the intensity Iu can be replaced by another color Cpr = [Rpr, Gpr, Bpr] which
satisfies

0.299Rpr + 0.587Gpr + 0.114Bpr = Iu (6)

and minimizes ∥Cu − Cpr∥ (alternatively, in the above formula, Eq. (2) can be used
instead of (1)).

Usually, the solution of (6) is obtained by a simple orthogonal projection of the Cu
color onto the 0.299 R + 0.587 G + 0.114 B = Iu plane, unless the result lies outside the
RGB cube. In such cases, additional steps are needed to find the closest color on the
boundary of the RGB cube.

Such color transformations will be referred to as YUV projections. Exemplary results
of such projections are given in Fig. 6.

2.3. Models of colorization

Colorization techniques typically assume that the intensity of monochrome images defines
the luminance of colored outputs, and only two chrominance channels should be recon-
structed. Usually, there are no other formal models used in the popular (re)colorization
methods, which are currently dominated by AI.

In this work, however, we propose to use decolorization (rgb-to-gray) models, as spec-
ified in Subsection 2.1, to define the models of colorization. Thus, given a monochrome
image, we assume that it was obtained from a hypothetical color image by applying Eq.3
with specific values [kR, kG, kB ] coefficients.

The number of such models can be very large, depending on the quantization step
applied to the coefficients (which can range from 0 to 1, subject to kR+kG+kB = 1). For
example, there are 5151 decolorization models with the 0.01 quantization increment and
125, 751 models with the 0.002 stepsize. Formally, any number of decolorization models
can be used. However, in practice, it is best to use only a limited subset, typically
between 20 and 40, of the most representative models. This results in a number of
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Fig. 6. Hot, jet, sine and warm pseudo-colorizations (of an exemplary monochrome image from SUN
dataset) before (top row) and after (bottom row) the YUV projections (by using Eq.6).

colorization variants from which the user can choose the most plausible one. If too many
rgb-to-gray models are used simultaneously, the sheer number of alternative colorizations
may be overwhelming for human evaluators. (Details are explained in [26].)

Given, in digital images, the finite number of intensity levels (e.g., from 0 to 255)
and, correspondingly, finite numbers of RGB colors, a pixel with intensity I can only
be assigned colors that satisfy Eq. (3) with the adopted [kR, kG, kB ] values. All such
colors should be considered viable choices for coloring an I -valued monochrome pixel.
It can be noted that the pool of available colors actually diminishes for darker/lighter
intensities (as shown in Fig. 7), and for the extreme values the choice is deterministic
(i.e., grayscale white/black should remain white/black in color).

As an illustration, Fig. 8 shows colors assigned to 208 intensity in two exemplary rgb-
to-gray models. Note that the first model is actually YUV (and all colors are perceived as
having almost the same brightness) while for the second model the perceived brightness
of colors varies significantly.

Alternatively, all colors assigned to the selected intensity Iu can be visualized as the
polygonal intersection of the kRR + kGG + kBB = Iu plane with the RGB color space
cube. An example is given in Fig. 9.

With no prior information provided, all colors available to the Iu intensity can be
assigned to a pixel of that value with the same probability. However, if the pixel has an
adjacent pixel with an intensity I1 and its already assigned color C1, the probabilities
of colors that could be assigned to Iu should be influenced by the intensity and color of
the neighbor.
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Fig. 7. Changes in the numbers of colors assigned to various intensities for [0.299, 0.587, 0.114],
[0.69, 0.12, 0.19] and [0.13, 0.175, 0.695] rgb-to-gray models.

(a) (b)

Fig. 8. Exemplary colors assigned to 208 intensity in (a) [0.299, 0.587, 0.114] and (b) [0.69, 0.12, 0.19]
models.

Therefore, we use a simple but surprisingly effective (as shown in [24,25,26]) heuristic
rule:

The greater the difference in brightness between adjacent pixels, the
higher the likelihood that their assigned colors will also differ significantly.

Under this rule, we prioritize colors from the pool available to the level Iu , which are
at distances from the color C1 proportional to the difference in intensity levels ∥Iu − I1∥.

Then, pixels can be colored using the following color assignment method:
1. Let’s assume a pixel with Iu intensity, which has an already colored neighbor with I1

intensity and C1 color. Let C = {Cu1 , ..., CuN
} be the list of colors available to Iu in

the adopted rgb-to-gray model (see examples in Fig. 8).
2. The neighbor (with I1 value and C1 color) contributes a color from the above C list.

First, the list is ordered by the distances of its colors from C1, i.e.,

Cmod = {Cui1 , ..., CuiN
} , where ∥Cuin

− C1∥ ≤
∥∥Cui(n+1) − C1

∥∥ (7)

In fact, the displayed lists of colors in Fig. 8 are already ordered (for I1 = 40 and
C1 = [20, 42, 137]).
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(a) (b)

Fig. 9. Distribution of colors assigned to three exemplary intensities in (a) RGB cube and (b) sRGB
cube. The assumed rgb-to-gray model is I = 0.299R + 0.587G + 0.114B. The intensities are 30,
80 and 208 (in sRGB), i.e., 0.118, 0.314 and 0.816 (in RGB).

3. A uniform distribution is used to randomly select a color from a specific sub-range of
the Cmod list. The location of this sub-range depends on the difference ∥Iu − I1∥.
In general, smaller differences favor colors from a narrower range near the top of the
Cmod list, while larger differences favor a wider range of colors towards the end of
Cmod. Refer to [25] for a detailed explanation of this step.

To achieve a more natural look and avoid unnecessarily regular patterns, the colorization
process employs a randomized variant of the queue-based flood-fill algorithm, e.g., [4].
This means the active pixel for coloring is randomly chosen from the current queue.

The initial queue consists of the brightest and darkest pixels, for which the color
selection is usually deterministic (see Fig. 7). Pixels are then colored using the previously
described steps until the queue is empty. However, during colorization, an uncolored pixel
might have several already colored neighbors. In these cases, the color selection process
(described in Point 3) is repeated multiple times. The final color assigned to the pixel
is then the average of the colors obtained from all its colored neighbors.

Cu = 1
K

K∑
k=1

Cuk
, where K = 1, 2, 3 or 4. (8)

Despite all these randomizing factors, the results produced by the outlined method
are surprisingly repeatable, depending mainly (as expected) on the adopted rgb-to-gray
model. In fact, the images shown in Fig. 1 are generated by this method, and many
more examples can be found in [24,25,26].

The visual plausibility of the results can be further improved by applying the YUV
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projection outlined in Subsection 2.2. Through visual inspection, it could be identified
that several images in Fig. 1 are actually rectified using this approach.

2.4. Remarks on alternative rgb-to-gray models

In the decolorization and colorization operations discussed in Subsections 2.1 and 2.3,
we assume rgb-to-gray models with the fixed values of adopted [kR, kG, kB ] coefficients.
Nevertheless, the process of colorization can be generalized by assuming that [kR, kG, kB ]
coefficients are individually assigned to each intensity level. In this case, the following
equation should be used instead of Eq. 3 (without affecting the presented methodology
of colorization):

I = kR(I)R + kG(I)G + kB(I)B (9)

However, such a generalization has two weaknesses. First, the number of alternative
colorization variants would become unimaginably large. For example, with a step size
of 0.002 for the model coefficients, the number of variants would approach 125 751256.
Second, the rgb-to-gray models by Eq. (9) are useless in the decolorization operation
because the intensity values are computed from the coefficients, which depend on the
unknown intensities themselves. Nevertheless, we will further explore these alternative
models in Section 4.

3. Pseudo-colorization of colorized images

The conversion of color (or colorized) images into pseudo-colored ones seems straight-
forward at first. We simply need to reduce the number of colors to 256, for example
by clustering all colors present in an image into 256 classes and then performing the
corresponding substitutions.

However, there are certain formal complications. As discussed in Subsection 2.2,
pseudo-colorization models are defined by their color maps. This means that pseudo-
colorization can only be performed on a monochrome image. Therefore, for any color
(or colorized) image, we first need to have its monochrome version, which can then be
pseudo-colored.

In Subsection 2.1, we assumed that grayscale images are obtained from color images
by applying decolorization (rgb-to-gray) models defined by Eq. 3, where the [kR, kG, kB ]
coefficients have specific values. Once these values are assumed or identified, pseudo-
colorization can be easily performed as explained in the following description.

First, as highlighted in Subsection 2.3, for the adopted rgb-to-gray model, any in-
tensity defines the polygonal intersection with the RGB cube (see Fig. 9). The centers
of mass of such polygons, i.e., the average colors assigned to intensities ranging from 0
to 1 (0 to 255), actually form a curve winding (from black to white) within the cube.
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Such curves are equivalent to the curves defining the color maps (see Fig. 5) and can be
employed as such.

Formally, for the adopted [kR, kG, kB ] model, the pseudo-color assigned to I intensity
is defined by

[R(I), G(I), B(I)] = center of mass [(RGB cube) ∩ (I = kRR + kGG + kBB plane)]
(10)

Fig. 10 shows the curves, i.e. the color maps, defined by three exemplary rgb-to-
gray models. Correspondingly, Figs. 11 and 12 compare outcomes of colorization and
pseudo-colorization of selected monochrome images using the same rgb-to-gray models.

(a) (b) (c)

Fig. 10. Curves representing the color maps obtained from three rgb-to-gray models: (a)
[0.299, 0.587, 0.114], (b) [0.69, 0.12, 0.19] and (c) [0.13, 0.175, 0.695].

The presented examples indicate that, despite a reduced number of colors, the pseudo-
colored images approximately preserve the coloristic perception of the (fully-)colorized
images, although the general impression is simplified and more abstract.

4. Colorization of pseudo-colored images

Colorization of pseudo-colored images is once again based on rgb-to-gray models. Given
a color map CM (and its equivalent curve, see Figure 5), we attempt to identify an rgb-
to-gray model MOD(CM) that would define (as explained in Section 3) a color map as
close as possible to CM. Then, a monochrome image can be colorized (using the method
outlined in Subsection 2.3) with the identified MOD(CM) model adopted.

Unfortunately, the color map curves obtained from rgb-to-gray models by averaging
colors assigned to particular intensities always start at black and terminate at white (see
Fig. 10), while curves of arbitrary color maps can start and terminate at any colors
within the RGB cube (e.g., Fig. 5b, c).

Therefore, as the preliminary step, the color map CM is transformed by the YUV

Machine GRAPHICS & VISION 32(3/4):65–82, 2023. DOI: 10.22630/MGV.2023.32.3.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.4


76 Relationships between colorization and pseudo-colorization. . .

Fig. 11. Results for the grayscale image (from Fig. 6), i.e., its colorized variants (1st column), colorized
variants after the YUV projection (2nd column), pseudo-colorized variants (3rd column) and
pseudo-colorized variants after the YUV projection (4th column). The results are obtained
using the following rgb-to-gray models: [0.299, 0.587, 0.114] (top), [0.69, 0.12, 0.19] (center) and
[0.13, 0.175, 0.695] (bottom). Note that the first model is actually YUV, so the results are the
same before and after the projection.

projection, and for each intensity I the shift from its original pseudo-color to the YUV-
projected pseudo-color is represented by the Tyuv vector:

Tyuv(I) = [RY UV (I), GY UV (I), BY UV (I)] − [R(I), G(I), B(I)], (11)

where the original [R(I), G(I), B(I)] pseudo-color is transformed by the YUV projection
into [RY UV (I), GY UV (I), BY UV (I)] .

Thus, the curves of YUV-projected color maps always start at black and terminate
at white (see examples in Fig. 13).

Next, for each intensity I, we individually identify the decolorization model (e.g.,
from 125 751 available rgb-to-gray models) which minimizes

[kR(I), kG(I), kB(I)] = min ∥kRRY UV (I) + kGGY UV (I) + kBBY UV (I) − I∥ , (12)

Machine GRAPHICS & VISION 32(3/4):65–82, 2023. DOI: 10.22630/MGV.2023.32.3.4 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.4
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Fig. 12. The same results as in Fig. 11 for another grayscale image (from SUN dataset).

(a) (b) (c) (d)

Fig. 13. The YUV-projected curves of exemplary color maps: (a) hot, (b) jet, (c) sine and (d) warm.
Compare the shapes to Fig. 5

i.e., the model which most accurately converts the modified pseudo-color into the corre-
sponding intensity.

The coefficients obtained in (12) define the optimum rgb-to-gray model MODopt(CM),
which will be adopted for colorizing monochrome images which are pseudo-colorized with
the original CM color map.

Crucially, Eq. 12 defines separate [kR(I), kG(I), kB(I)] coefficients for each intensity
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Fig. 14. Exemplary color maps (from left to right: hot, jet, sine and warm) with their original pseudo-
colors (top row), pseudo-colors after YUV projections (middle row) and colors of the maps
converted from the MODopt(CM) models (bottom row).

level. This implies that Eq. (9) (see Subsection 2.4) truly captures the essence of the
MODopt(CM) model, not Eq. (3). Nevertheless, such a modification does not affect the
model of colorization presented in Section 2.3.

The obtained model MODopt(CM) can be back-converted into the color map using
the approach discussed in Section 3. In this approach, for each intensity I its pseudo-
color is specified by the center of mass of the polygon defined by the [kR(I), kG(I), kB(I)]
coefficients.

Obviously, the color map obtained in this way differs not only from the original
CM map but also from the YUV-projected map. This is because the centers of poly-
gons defined by [kR(I), kG(I), kB(I)] coefficients (these centers will be referred to as
[RCoM(I), GCoM(I), BCoM(I)]) are almost always far from the [RY UV (I), GY UV (I),
BY UV (I)] colors (i.e., YUV-projected pseudo-colors of the original CM map) which can
be anywhere within the corresponding polygons.

Fig. 14 shows exemplary original color maps, the maps after applying the YUV
projections, and eventually compares them to the maps obtained from the corresponding
MODopt(CM) models.

Therefore, the images colorized by the MODopt(CM) models significantly differ in
terms of coloristic perception from the images pseudo-colorized by the original CM maps.
However, we propose a simple correction that reverses the changes introduced in the
color maps so that the corrected images are perceptually consistent with the original
pseudo-color images, albeit with much richer diversity of colors.

Given a pixel of (x, y) coordinates and with the original I intensity, its color is
corrected as follows:

RGBnew(x, y) = RGB(x, y) − Toff {I(x, y)} , (13)

where Toff (I) = [RCoM (I), GCoM (I), BCoM (I)] − [R(I), G(I), B(I)], i.e. it represents
the offset between the original pseudo-color and the corresponding pseudo-color of the
map reconstructed from the MODopt(CM) model.

If the vector resulting from Eq. (13) extends outside the RGB cube, we select the
color at the intersection of this vector with the cube boundary.

Figs. 15 and 16 illustratively summarize the results of converting pseudo-colorized
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Fig. 15. First row: an image pseudo-colorized by (from left to right) hot, jet, sine and warm color maps.
Second row: the corresponding colorized images before the color correction by Eq. 13. Third
row: the colorized images after the color correction by Eq. 13.

versions of two previously discussed exemplary images into their fully-colorized variants,
using four different color maps.

The colorized images correspond well to the pseudo-colored originals in terms of
overall coloristic perception, but the added variability of colors enriches the attractiveness
and visual appeal of the results.

5. Conclusions

This paper proposes a novel and general approach that bridges the gap between image
colorization and pseudo-colorization, which are fundamentally distinct concepts. The key
unifying element is the adopted model for image decolorization (rgb-to-gray) in which
we hypothesize that grayscale image intensities are linear combinations (represented by
[kR, kG, kB ] coefficients) of primary colors from a potentially non-existent color image.

In image colorization, these coefficients are freely chosen, allowing for the creation
of diverse colorized versions of a grayscale image. These variations may not necessarily
reflect the “true” colors of the scene, but rather offer aesthetically pleasing visualizations
of imagined worlds. For each colorized image, a corresponding pseudo-colored variant
can be derived by leveraging the chosen [kR, kG, kB ] coefficients.

Colorization of pseudo-colored images follows a different approach. Here, the color
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Fig. 16. The same results as in Fig. 15 for another image pseudo-colorized by four color maps.

maps themselves define the rgb-to-gray models, with unique [kR, kG, kB ] coefficients for
each intensity level.

Notably, both the conversion from colorized to pseudo-colored images and vice versa
result in images with perceptually similar color palettes, containing either a reduced or
enriched range of colors.

The proposed methodologies, verified through experimentation, offer a solution to
an intriguing challenge, though their immediate practicality might be limited. Nonethe-
less, this solution is directly applicable for scenarios where preserving the overall color
perception of an image is crucial, but the goal is to create either an abstract/stylized
representation of a full-color image or a more visually engaging and expressive variant
of a pseudo-colored image.

Beyond the scope of this paper, preliminary investigations suggest the potential of
this approach for a challenging task: recovering visual artifacts lost during the conversion
of color originals to monochrome or pseudo-colored images. This promising avenue merits
further exploration in future work.

Furthermore, converting pseudo-colored images into fully colorized ones could serve
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as a stepping stone for creating or enriching training datasets for AI-based colorization.
This is particularly relevant for domains beyond human color perception, where we only
have access to grayscale information, such as infrared, ultraviolet, ultrasound, MRI, or
X-ray modalities.
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