PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the optical rotatory of potassium titanyl phosphateusing the advanced dual-wavelength polarimetric method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A dual-wavelength high-accuracy universal polarimeter was applied to the circularbirefringence and optical activity measurement in potassium titanyl phosphate (KTP)nonlinear crystal. The experimental setup used two single-mode He-Ne lasers with close wavelengths of 594 and 633 nm as light sources. Measurement has been carried out for two crystal settings in directions of a 45-degree relative angle to the [100] and [010]crystallographic axes. Multiple light reflections inside the crystal sample were considered when processing the results of the polarimetric measurements. The results have been analysed using the optical transmission function for the polariser-sample-analyser system, and 2D intensity contour maps made it possible to determine the phase parameters, systematic errors, and eigenwaves ellipticity. It was found that the gyration tensorcomponent of the KTP crystal is equal to g₁₂ = 1.4 ⋅10⁻⁵ which in terms of optical rotatory power corresponds to the very small magnitude of the rotation value of 2.3 deg/mm.
Rocznik
Strony
art. no. e152682
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Atomic, Molecular and Optical Physics, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk 80-233, Poland
autor
  • Faculty of Physics, Ivan Franko National University of Lviv, Kyrylo & Mephodiy 8, Lviv 79005, Ukraine
  • Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaw, ul. Wóycickiego 1/3, Warsaw 01-938, Poland
Bibliografia
  • [1] Bierlein, J. D. & Vanherzeele, H. Potassium titanyl phosphate: properties and new applications. J. Opt. Soc. Am. B 6, 622–633 (1989). https://doi.org/10.1364/JOSAB.6.000622
  • [2] Zumsteg, F. C., Bierlein, J. D. & Gier, T. E. KxRb1− xTiOPO4: a new nonlinear optical material. J. Appl. Phys. 47, 4980–4985 (1976). https://doi.org/10.1063/1.322459
  • [3] Flack, H. D. Chiral and achiral crystal structures. Helv. Chim. Acta 86, 905–921 (2003). https://doi.org/10.1002/hlca.200390109
  • [4] Yariv, A. & Yeh, P. Optical Waves in Crystal Propagation and Control of Laser Radiation. (Wiley, 1983).
  • [5] Nye, J. Physical Properties of Crystals. (Oxford University Press, 1985).
  • [6] Rabin, H. & Bey, P. P. Phase matching in harmonic generation employing optical rotatory dispersion. Phys. Rev. 156, 1010–1016 (1967). https://doi.org/10.1103/PhysRev.156.1010
  • [7] Simon, H. J. & Bloembergen, N. Second-harmonic light generation in crystals with natural optical activity. Phys. Rev. 171, 1104–1114 (1968). https://doi.org/10.1103/PhysRev.171.1104
  • [8] Rodriguez, V. Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: Theory and materials. J. Chem. Phys. 128, 064707 (2008). https://doi.org/10.1063/1.2824985
  • [9] Tebbutt, I. J. Effect of optical activity on type-I and type-II phase matching in second-harmonic generation. Appl. Opt. 31, 5810–5812 (1992). https://doi.org/10.1364/AO.31.005810
  • [10] Dmitriev, V. G., Gurzadyan, G. G., & Nikogosyan, D. N. Handbook of Nonlinear Optical Crystals (Springer, 2013).
  • [11] Cheng, L. K. & Bierlein, J. D. KTP and isomorphs – recent progress in device and material development. Ferroelectrics 142, 209–228 (1993). https://doi.org/10.1080/00150199308237899
  • [12] Chani, V. I., Shimamura, K., Endo, S. & Fukuda, T. Growth of mixed crystals of the KTiOPO4 (KTP) family. J. Cryst. Growth 171, 472–476 (1997). https://doi.org/10.1016/S0022-0248(96)00693-8
  • [13] Roth, M., Tseitlin, M. & Angert, N. Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals. Opt. Mater. 28, 71–76 (2006). https://doi.org/10.1016/j.optmat.2004.11.056
  • [14] Thomas, P. A., Mayo, S. C. & Watts, B. E. Crystal structures of RbTiOAsO4, KTiO(P0.58As0.42)O4, RbTiOPO4 and (Rb0.465 K0.535)TiOPO4, and analysis of pseudosymmetry in crystals of the KTiOPO4 family. Acta. Crystallogr. B. 48, 401–407 (1992). https://doi.org/10.1107/S0108768192002465
  • [15] Hernández-Rodríguez, C., Fragoso-López, A. B., Herreros-Cedrés, J. & Guerrero-Lemus, R. Temperature-dependent optical rotatory power in the presence of birefringence of KTA and KTP crystals by the high-accuracy universal polarimeter method at 632.8 nm wavelength. J. Appl. Crystallogr. 47, 566–574 (2014). https://doi.org/10.1107/S1600576714000454
  • [16] Thomas, P A., Tebbutt, I. J. & Glazer, A. M. Potassium titanyl phosphate, KTiOPO4. I. Experimental investigation of optical gyration, absolute optical chirality and twinning. J. Appl. Crystallogr. 24, 963–967 (1991). https://doi.org/10.1107/s0021889891007239
  • [17] Sturm, C., Zviagin, V. & Grundmann, M. Dielectric tensor, optical activity, and singular optic axes of KTP in the spectral range 0.5–8.4 eV. Phys. Rev. Mater. 4, 055203 (2020). https://doi.org/10.1103/PhysRevMaterials.4.055203
  • [18] Kobayashi, J., Asahi, T., Takahashi, S. & Glazer, A. M. Evaluation of the systematic errors of polarimetric measurements: application to measurements of the gyration tensors of α-quartz by the HAUP. J. Appl. Crystallogr. 21, 479–484 (1988). https://doi.org/10.1107/S0021889888005503
  • [19] Takanabe, A., Koshima, H. & Asahi, T. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer. AIP Adv. 7, 025209 (2017). https://doi.org/10.1063/1.4977440
  • [20] Tanaka, M., Nakamura, N., Koshima, H. & Asahi, T. An application of the advanced high-accuracy universal polarimeter to the chiroptical measurement of an intercalated compound K4Nb6O17 with high anisotropy. J. Phys. D: Appl. Phys. 45, 175303 (2012). https://doi.org/10.1088/0022-3727/45/17/175303
  • [21] Arteaga, O., Freudenthal, J., Wang, B. & Kahr, B. Mueller matrix polarimetry with four photoelastic modulators: theory and calibration. Appl. Opt. 51, 6805–6817 (2012). https://doi.org/10.1364/AO.51.006805
  • [22] Martin, A. T., Nichols, S. M., Murphy, V. L. & Kahr, B. Chiroptical anisotropy of crystals and molecules. Chem. Comm. 57, 8107–8120 (2021). https://doi.org/10.1039/D1CC00991E
  • [23] Shopa, Y., Shopa, M. & Ftomyn, N. Dual-wavelength laser polarimeter and its performance capabilities. Opto-Electron. Rev. 25, 6–9 (2017). https://doi.org/10.1016/j.opelre.2017.01.001
  • [24] Shopa, M., Ftomyn, N. & Shopa, Y. Dual-wavelength polarimeter application in investigations of the optical activity of a langasite crystal. J. Opt. Soc. Am. B 34, 943–948 (2017). https://doi.org/10.1364/josaa.34.000943
  • [25] Double Glan-Taylor Polarizers. Thorlabs.
  • https://www.thorlabs.com/catalogpages/v21/906.pdf (Accessed: July 30th, 2024).
  • [26] Shopa, M. et al. Polarimetric studies of l-arginine-doped potassium dihydrogen phosphate single crystals. J. Appl. Crystallogr. 53, 1257–1265 (2020). https://doi.org/10.1107/S1600576720010870
  • [27] Shopa, M., Ftomyn, N. & Shopa, Y. Optical rotation in the lithium triborate nonlinear crystal. J. Appl. Crystallogr. 56, 432–438 (2023). https://doi.org/10.1107/S160057672300136X
  • [28] Kato, K. & Takaoka, E. Sellmeier and thermo-optic dispersion formulas for KTP. Appl. Opt. 41, 5040–5044 (2002). https://doi.org/10.1364/ao.41.005040
  • [29] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Elsevier, 2013).
  • [30] Emanueli, S. & Arie, A. Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4. Appl. Opt. 42, 6661–6665 (2003). https://doi.org/10.1364/AO.42.006661
  • [31] Hernández-Rodríguez, C. & Gómez-Garrido, P. Optical anisotropy of quartz in the presence of temperature-dependent multiple reflections using a high-accuracy universal polarimeter. J. Phys. D: Appl. Phys. 33, 2985 (2000). https://doi.org/10.1088/0022-3727/33/22/318
  • [32] Gomez, P. & Hernandez, C. High-accuracy universal polarimeter measurement of optical activity and birefringence of α-quartz in the
  • presence of multiple reflections. J. Opt. Soc. Am. B 15, 1147–1154 (1998). https://doi.org/10.1364/JOSAB.15.001147
  • [33] Moxon, J. R. L. & Renshaw, A. R. The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections. I. Introduction and description of the method. J. Phys. Condens. Matter 2, 6807–6836 (1990). https://doi.org/10.1088/0953-8984/2/32/012
  • [34] Shopa, M. & Ftomyn, N. Application of two-dimensional intensity maps in high-accuracy polarimetry. J. Opt. Soc. Am. A 36, 485–491 (2019). https://doi.org/10.1364/JOSAA.36.000485
  • [35] Bennett, J. M. Polarizers. in Handbook of Optics. (eds. Bass, M., Van Stryland, E. W., Wolfe, W. L. & Williams, D. R.) vol. 2 (McGraw-Hill, 1995).
  • [36] Takubo, Y., Takeda, N., Huang, J. H., Muroo, K. & Yamamoto, M. Precise measurement of the extinction ratio of a polarization analyser. Meas. Sci. Technol. 9, 20–23 (1998). https://doi.org/10.1088/0957-0233/9/1/004
  • [37] Fan, T. Y. et al. Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4. Appl. Opt. 26, 2390–2394 (1987). https://doi.org/10.1364/AO.26.002390
  • [38] Kaminsky, W., Thomas, P. A. & Glazer, A. M. Optical rotation in RbTiOAsO4 (point group mm2). Z. Kristallogr. Cryst. Mater. 217, 1–7 (2002). https://doi.org/10.1524/zkri.217.1.1.20799
  • [39] Devarajan, V. T. & Glazer, A. M. Theory and computation of optical rotatory power in inorganic crystals. Acta Crystallogr. A 42, 560–569 (1986). https://doi.org/10.1107/S0108767386098732
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75aba163-1c60-42f2-a55b-56ee58ba6c1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.