PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Torque ripple reduction in BLDC motor based ona PWM technique for open-end winding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a modulation method for BLDC motors with unconnected windings. This method uses two full bridges (or three 12-switch H-bridges). The useof the described modulation enables reducing the motor current variable and increasing (fourfold in relation to the switching frequency) the motor current ripple frequency. Themost important benefit of using a 12-switch inverter is the twofold reduction of the dc-linkvoltage while maintaining the rated rpm (voltage reduction in comparison to a typical supplymethod). A voltage reduction causes a reduction in losses on semi-conductor elements. Thearticle also demonstrates that the proposed modulation technique significantly shortens thetime of current commutation between windings.
Rocznik
Strony
5--23
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • AGH – University of Science and Technology, Poland
Bibliografia
  • [1] Dziadecki A., Grzegorski J., Skotniczny J., Sensorless control system of SRM drive, Przegląd Elektrotechniczny, vol. 88, no. 8, pp. 317–322 (2012).
  • [2] Yang Y., Ting Y., Improved Angular Displacement Estimation Based on Hall-Effect Sensors for Drivinga Brushless Permanent-Magnet Motor, IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 504–511 (2014).
  • [3] Xia C., Xiao Y., Chen W., Shi T., Torque Ripple Reduction in Brushless DC Drives Based on Reference Current Optimization Using Integral Variable Structure Control, IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 738–752 (2014).
  • [4] Masmoudi M., Badsi B., Masmoudi A., DTC of B4-Inverter-Fed BLDC Motor Drives With Reduced Torque Ripple During Sector-to-Sector Commutations, IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4855–4865 (2014).
  • [5] Chun T., Tran Q., Lee H., Kim H., Sensorless Control of BLDC Motor Drive for an Automotive Fuel Pump Using a Hysteresis Comparator, IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1382–1391 (2014).
  • [6] Dadashnialehi A., Bab-Hadiashar A., Cao Z., Kapoor A., Intelligent Sensorless Antilock Braking System for Brushless In-Wheel Electric Vehicles, IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1629–1638 (2015).
  • [7] Tsotoulidis S., Safacas A., Deployment of an Adaptable Sensorless Commutation Technique on BLDCMotor Drives Exploiting Zero Sequence Voltage, IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 877–886 (2015).
  • [8] Cui G., Liu G., Wang K., Song X., Sensorless Drive for High-Speed Brushless DC Motor Based onthe Virtual Neutral Voltage, IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3275–3285 (2015).
  • [9] Jung S., Kim J., Jae J., Kim J., Commutation Control for the Low-Commutation Torque Ripple inthe Position Sensorless Drive of the Low-Voltage Brushless DC Motor, IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 5983–5994 (2014).
  • [10] Cui C., Liu G., Wang K., A Novel Drive Method for High-Speed Brushless DC Motor Operating ina Wide Range, IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4998–5008 (2015).
  • [11] Ciurys M. P., Analysis of the influence of inverter PWM speed control methods on the operation ofa BLDC motor, Archives of Electrical Engineering, vol. 67, no. 4, pp. 939–953 (2018).
  • [12] Tokyo Shibaura Electric Co., Inverter and air conditioner controlled by the same, U.S. Patent 5 486 743 (1996).
  • [13] Gui-Jia S., McKeever J. W., Low-cost sensorless control of brushless DC motors with improved speedrange, IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 296–302 (2004).
  • [14] Becerra R. C., Jahns T. M., Ehsani M., Four-quadrant sensorless brushless ECM drive, APEC ’91:Sixth Annual Applied Power Electronics Conference and Exhibition, Dallas, TX, USA, pp. 202–209 (1991).
  • [15] Shao J., Nolan D., Teissier M., Swanson D., A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps, IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1734–1740 (2003).
  • [16] Lai Y., Shyu F., Chang Y.,Novel loss reduction pulsewidth modulation technique for brushless dc motor drives fed by MOSFET inverter, IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1646–1652 (2004).
  • [17] Tokyo Shibaura Electric Co.,Drive control apparatus for brushless DC motor and driving method therefore, U.S. Patent 5 491 393 (1996).
  • [18] Rajeevan P. P., Sivakumar K., Gopakumar K., Patel C., Abu-Rub H., A Nine-Level Inverter Topologyfor Medium-Voltage Induction Motor Drive With Open-End Stator Winding, IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3627–3636 (2013).
  • [19] Wei J., Deng Q., Zhou B., Shi M., Liu Y., The Control Strategy of Open-Winding Permanent Magnet Starter-Generator With Inverter-Rectifier Topology, IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 983–991 (2013).
  • [20] de Almeida Carlos G. A., dos Santos E. C., Jacobina C. B., Mello J. P. R. A., Dynamic Voltage Restorer Based on Three-Phase Inverters Cascaded Through an Open-End Winding Transformer, IEEE Transactions on Power Electronics, vol. 31, no. 1, pp.188–199 (2016).
  • [21] Kim Y., Kyung-Won J., Lee T., Kim Y., Jung S., Design and control methodology analysis of BLDC motor for torque ripple minimization considering winding connection, 2013 International Conferenceon Electrical Machines and Systems (ICEMS), Busan, pp. 1109–1112 (2013).
  • [22] Qiu J., Shi C., Sensorless control of brushless DC motor with delta connection windings, 2010 International Conference on Electrical Machines and Systems, Incheon, pp. 848–851 (2010).
  • [23] Seol H., Lim J., Kang D., Park J. S., Lee J., Optimal Design Strategy for Improved Operation of IPMBLDC Motors With Low-Resolution Hall Sensors, IEEE Transactions on Industrial Electronics, vol. 64,no. 12, pp. 9758–9766 (2017).
  • [24] Chen S., Sun W., Wang K., Liu G., Zhu L., Sensorless High-Precision Position Correction Strategy for a 100 kW@20 000 r/min BLDC Motor With Low Stator Inductance, IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4288–4299 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75a75d79-6d32-4bce-8761-ab05b4a31741
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.