Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we generalize the xf2 by introducing the sequence space xfmn2 (Δ(ηϒ)μ,p,q,r) and exhibit some general properties of the space.
Czasopismo
Rocznik
Tom
Strony
159--172
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
- Department of Mathematics SASTRA University Thanjavur-613 401, India
Bibliografia
- [1] Altay B., Başar F., Some new spaces of double sequences, J. Math. Anal. Appl., 309(1)(2005), 70-90.
- [2] Altay B., Başar F., The fine spectrum and the matrix domain of the difference operator Δ on the sequence space lp, (0 < p < 1), Commun. Math. Anal., 2(2)(2007), 1-11.
- [3] Apostol T., Mathematical Analysis, Addison-wesley, London, 1978.
- [4] Başar F., Atlay B., On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1)(2003), 136-147.
- [5] Başar F., Sever Y., The space Lp of double sequences, Math. J. Okayama Univ., 51(2009), 149-157.
- [6] Başarir M., Solancan O., On some double sequence spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
- [7] Bektaş C., Altin Y., The sequence space lm (p, q, s) on seminormed spaces, Indian J. Pure Appl. Math., 34(4)(2003), 529-534.
- [8] Bromwich T.J.I’A., An Introduction to the Theory of Infinite Series, Macmillan and Co.Ltd., New York, 1965.
- [9] Cannor J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2)(1989), 194-198.
- [10] Çolak R., Et M., Malkowsky E., Some Topics of Sequence Spaces, Lecture Notes in Mathematics, Firat Univ. Elazig, Turkey, Firat Univ. Press, (2004), 1-63, ISBN: 975-394-0386-6.
- [11] Gökhan A., Çolak R., Double sequence spaces …[wzór], ibid., 160(1)(2005), 147-153.
- [12] Gökhan A., Çolak R.,The double sequence spaces …[wzór], Appl. Math. Comput., 157(2),(2004), 491-501.
- [13] Hamilton H.J., A generalization of multiple sequences transformation, Duke Math. J., 4(1938), 343-358.
- [14] Hamilton H.J., hange of Dimension in sequence transformation, Duke Math. J., 4(1938), 341-342.
- [15] Hamilton H.J., Preservation of partial limits in multiple sequence transfor mations, Duke Math. J., 4(1939), 293-297.
- [16] Hamilton H.J., Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
- [17] Hardy G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
- [18] Kamthan P.K., Gupta M., Sequence Spaces and Series, Lecture Notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- [19] Kizmaz H., On certain sequence spaces, Cand. Math. Bull., 24(2)(1981), 169-176.
- [20] Krasnoselskii M.A., Rutickii Y.B., Convex Functions and Orlicz Spaces, Gorningen, Netherlands, 1961.
- [21] Kuttner B., Note on strong summability, J. London Math. Soc., 21(1946), 118-122.
- [22] Lindenstrauss J., Tzafriri L., On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [23] Maddox I.J., On strong almost convergence, Math. Proc. Cambridge Philos. Soc., 85(2)(1979), 345-350.
- [24] Maddox I.J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100(1)(1986), 161-166.
- [25] Moricz F., Extentions of the spaces c and c0 from single to double sequences, Acta. Math. Hung., 57(1-2)(1991), 129-136.
- [26] Mursaleen M., Edely O.H.H., Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 532-540.
- [27] Mursaleen M., Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 523-531.
- [28] Mursaleen M., Edely O.H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1)(2003), 223-231.
- [29] Mursaleen M., Khan M.A., Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math., XXXII(1999), 145-150.
- [30] Moricz F., Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
- [31] Nakano H., Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [32] Orlicz W., Über Raume (Lm), Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
- [33] Parashar S.D., Choudhary B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4)(1994), 419-428.
- [34] Pringsheim A., Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann, 53(1900), 289-321.
- [35] Rao K.C, Subramanian N., The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
- [36] Robison G.M., Divergent double sequences and series, Amer. Math. Soc. Trans., 28(1926), 50-73.
- [37] Ruckle W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
- [38] Silverman L.L., On the definition of the sum of a divergent series, University of Missouri Studies, Mathematics Seriesun, (published thesis).
- [39] Subramanian N., Misra U.K., The semi normed space defined by a double gai sequence of modulus function, Fasc. Math., 45(2010), 111-120.
- [40] Toeplitz O., Über allgenmeine linear mittel bridungen, Prace Matematyczno-Fizyczne (Warsaw), 22(1911).
- [41] Tripathy B.C., On statistically convergent double sequences, Tamkang J. Math., 34(3)(2003), 231-237.
- [42] Tripathy B.C., Et M., Altin Y., Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. Appl., 1(3)(2003), 175-192.
- [43] Türkmenoglu A., Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12(1)(1999), 23-31.
- [44] Zeltser M., Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75a03c04-339b-47d2-9abc-b4c75b7d15c3