PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of plasma nitriding process on the fatigue and high temperature corrosion resistance of Inconel 740H nickel alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a comparison of microhardness, fatigue and high temperature corrosion of Inconel 740H nickel alloy in its as-received state and the same material with nitrided surface layers. The nitrided layers were produced using traditional glow discharge nitriding (specimens nitriding on the cathode potential) and an active screen (specimens nitriding at the plasma potential). A microstructure of the layers was characterized through the scanning electron microscopy, X-ray energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical properties of the nitrided Inconel 740H alloy were examined using microhardness measurements and standard fatigue tests. It was found that Inconel 740H with a nitrided surface exhibited an improved fatigue response of 50 MPa in the whole range of stress amplitudes from 350 to 650 MPa and almost 325% increase of hardness for plasma modified surface and 250% for cathode modified surface. Additionally, the application of cathode nitriding enhanced the corrosion resistance of the alloy in question and effectively protected it against a high temperature oxidation.
Słowa kluczowe
Rocznik
Strony
art. no. e57, 2022
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, 00-908 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, 00-908 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • 1. Zieliński A, Sroka M, Dudziak T. Microstructure and mechanical properties of Inconel 740H after long, term service. Materials. 2018;11:2130. https://doi.org/10.3390/ma11112130.
  • 2. de Barbadillo JJ, Baker BA, Gollihue RD, McCoy SA (2018)Properties of INCONEL alloy 740H for high pressure steam and supercritical CO2 applications. In: Proceedings of the ASME 2018 symposium on elevated temperature application of materials for fossil, nuclear, and petrochemical industries. ASME 2018 symposium on elevated temperature application of materials for fossil, nuclear, and petrochemical industries. Seattle, Washington, USA. April 3–5, 2018. V001T01A005. ASME. https://doi.org/10.1115/ETAM2018-6741 (2).
  • 3. Wilson AS. Formation and effect of topologically close-packed phases in nickel-based superalloys. Mater Sci Technol. 2017;33(9):1108–18. https:// doi. org/ 10. 1080/ 02670 836. 2016.1187335 (3).
  • 4. Lu J, Yang Z, Xu S, Zhao H, Gu Y. Oxidation behaviors of Inconel 740H in air and dynamic steam. High Temp Mater Process (Lond). 2016;35(7):697–704. https://doi.org/10.1515/htmp-2014-0242.
  • 5. Jiang H, Dong J, Zhang M, Zheng L, Yao Z. Oxidation behaviour and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 °C. Oxid Met. 2015;84:61–72. https://doi.org/10.1007/s11085-015-9543-6.
  • 6. Jia Q, Gu D. Selective laser melting additive manufactured Inconel 718 superalloy parts, high-temperature oxidation property and its mechanisms. Opt Laser Technol. 2014;62:161–71. https://doi.org/10.1016/j.optlastec.2014.03.008.
  • 7. Vesel A, Drenik A, Elersic K, Mozetic M, Kovac J, Gyergyek T, Stockel J, Varju J, Panek R, Balat-Pichelin M. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature. Appl Surf Sci. 2014;305:674–82. https://doi.org/10.1016/j.apsusc.2014.03.160.
  • 8. Jiang H, Dong J, Zhang M. Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 °C. Oxid Met. 2015;84:61–72. https://doi.org/10.1007/s11085-015-9543-6.
  • 9. Winter K-M, Kalucki J, Koshel D. Process technologies for ther-mochemical surface engineering. Thermochem Surf Eng Steels. 2015. https://doi.org/10.1533/9780857096524.1.141.
  • 10. Shivamurthy RC, Kamaraj M, Nagarajan R, Shariff SM, Padmanabham G. Laser surface modification of steel for slurry erosion resistance in power plants. In: Woodhead Publishing Series in metals and surface engineering, laser surface modification of alloys for corrosion and erosion, 2012, pp. 177–287. https://doi.org/10.1533/9780857095831.2.177.
  • 11. Vissutipitukul P, Aizawa T. Wear of plasma-nitrided aluminium alloys. Wear. 2005;259:482–9. https://doi.org/10.1016/j.wear.2005.02.119.
  • 12. Gupta K, Jain NK, Laubscher R. Surface property enhancement of gears, advanced gear manufacturing and finishing. New York: Academic Press; 2017. p. 167–96. https:// doi. org/ 10. 1016/B978-0-12-804460-5.00006-7.
  • 13. Edrisy A, Farokhzadeh K. Plasma nitriding of titanium alloys, plasma science and technology. Prog Phys States Chem React. 2016. https://doi.org/10.5772/61937.
  • 14. Hirschmann ACO, Silva MM, Moura Neto C, Ueda M, Mello CB, Barboza MJR, Couto AA. Surface modification of Inconel 718 superalloy by plasma immersion ion implantation. In: Ott EA, Groh JR, Banik A, Dempster I, Gabb TP, Helmink R, Liu X, Mitchell A, Sjöberg GP, Wusatowska-Sarnek A, editors. Superalloy 718 and derivatives. Wiley; 2010. pp. 992–1001. https://doi.org/10.1002/9781118495223.ch75.
  • 15. Kovací H, Ghahramanzadeh HASL, Albayrak Ç, Alsaran A, Çelik A. Effect of plasma nitriding parameters on the wear resistance of alloy Inconel 718. Metal Sci Heat Treat. 2016;58:470–4. https://doi.org/10.1007/s11041-016-0037-1.
  • 16. Ling LS, Yin Z, Hu Z, Wang J, Sun BD. Effects of the γ′′-Ni 3 Nb phase on fatigue behavior of nickel-based 718 superalloys with different heat treatments. Materials. 2019;12(23):3979. https://doi.org/10.3390/ma12233979.
  • 17. Fournier D, Pineau A. Low cycle fatigue behavior of Inconel 718 at 298 K and 823 K. Metall Trans A. 1977;8:1095–105. https://doi.org/10.1007/BF02667395.
  • 18. Kukla D, Sitek R. Influence of aluminide layer on the dynamics of the development of fatigue damage in Ni–Cr–Co alloy. Solid State Phenom. 2016;240:101–7. https://doi.org/10.4028/www.scientific.net/SSP.240.101.
  • 19. Kopec M, Kukla D, Yuan X, Rejmer W, Kowalewski ZL, Senderowski C. Aluminide thermal barrier coating for high temperature performance of MAR 247 nickel based superalloy. Coatings. 2021;11:48. https://doi.org/10.3390/coatings11010048.
  • 20. Genel K, Demirkol MT, Çapa M. Effect of ion nitriding on fatigue behaviour of AISI 4140 steel. Mater Sci Eng A. 2000;279:207–16. https:// doi. org/ 10. 1016/ S0921- 5093(99)00689-9.
  • 21. Terent’ev VF, Michugina MS, Kolmakov AG, Kvedaras V, Čiuplys V, Čiuplys A, Vilys J. The effect of nitriding on fatigue strength of structural alloys. Mechanika. 2007;2(64):12–22.
  • 22. Sitek R, Kaminski J, Mizera J. Corrosion resistance of the Inconel 740H nickel alloy after pulse plasma nitriding at a frequency of 10 kHz. Acta Phys Pol, A. 2016;129:584–7. https://doi.org/10.12693/APhysPolA.129.584.
  • 23. de Castro MCB, Couto AA, Almeida GFC, Massi M, de Lima NB, da Silva-Sobrinho A, Castagnet M, Xavier GL, Oliveira RR. The effect of plasma nitriding on the fatigue behavior of the Ti-6Al-4V alloy. Materials. 2019;12:520. https://doi.org/10.3390/ma12030520.
  • 24. Yamane K, Morino K, Kawagoishi N, Fukada K. Fatigue properties of radical nitrided alloy 718 at elevated temperature under push pull loading. J Soc Mater Sci Jpn. 2010;59:821–6. https://doi.org/10.2472/jsms.59.821.
  • 25. Fuentes GG. Surface engineering and micro-manufacturing. In: Micro and nano technologies, micromanufacturing engineering and technology; 2015. pp. 459–486. https://doi.org/10.1016/B978-0-323-31149-6.00020-7.
  • 26. Xue L, Wang J, Li L, Chen G, Sun L, Yu S. Enhancement of wear and erosion-corrosion resistance of Inconel 718 alloy by liquid nitriding. Mater Res Express. 2020. https://doi.org/10.1088/2053-1591/abb426.
  • 27. Maniee A, Mahboubi F, Soleimani R. Improved hardness, wear and corrosion resistance of Inconel 718 treated by hot wall plasma nitriding. Met Mater Int. 2020;26:1664–70. https://doi.org/10.1007/s12540-019-00476-z.
  • 28. Zhang H, Qin H, Ren Z, Zhao J, Hou X, Doll GL, Dong Y, Ye Ch. Low-temperature nitriding of nanocrystalline Inconel 718 alloy. Surf Coat Technol. 2017;330:10–6. https://doi.org/10.1016/j.surfcoat.2017.09.040.
  • 29. Borowski T, Brojanowska A, Kost M, Garbacz H, Wierzchoń T. Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding. Vacuum. 2009;83(12):1489–93. https://doi.org/10.1016/j.vacuum.2009.06.056.
  • 30. Pilarska M, Frączek T, Maźniak K. The role of complementary potential in plasma nitriding processes of technical titanium. Arch Metall Mater. 2018;63(4):1637–42. https:// doi. org/ 10. 24425/amm.2018.125087.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-759ca945-96f2-40cd-9352-0980bf6e28de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.