Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the principles of shaping material systems of modern building joints in terms of thermal and humidity requirements. An integral part of the work is the calculation of the physical parameters of the connection between the external wall and the window using a computer program. The choice of material solutions for construction joints should be based on calculations and analyzes of their physical parameters. The physical parameters of the connection between the external wall and the window in the cross-section through the lintel depend on the arrangement of the material layers of the joint: e.g. type and thickness of thermal insulation, window location. Improper shaping of the arrangement of material layers results in increased heat losses in the form of heat flux Φ [W] and linear heat transfer coefficient Ψ [W/(m・K)] and a decrease in temperature on the internal surface of the partition at the thermal bridge, which may lead to the risk of the occurrence of condensation on the inner surface of the partition.
Rocznik
Tom
Strony
35--44
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Bydgoszcz University of Science and Technology, Poland
Bibliografia
- 1. Adamus, J. & Pomada, M. (2023) Analysis of the influence of external wall material type on the thermal bridge at the window-to-wall interface. Materials, 16(19), 6585.
- 2. Aghasizadeh, S., Kari, B.M. & Fayaz, R. (2022) Thermal performance of balcony thermal bridge solutions in reinforced concrete and steel frame structures. Journal of Building Engineering, 48, 103984.
- 3. Alkadri, M.F., Cahyadi Agung, M.R. & De Luca, F. (2023) An integrated computational method for calculating dynamic thermal bridges of building facades in tropical countries. Frontiers of Architectural Research, 10.1016/j.foar.2023.11.003.
- 4. Announcement of the Minister of Development and Technology of Apil 15, 2022 regarding the announcement of the uniform text of the regulation of the Minister of Infrastructure on the technical conditions to be met by buildings and their location. OJ 2022, item 1225.
- 5. Bliuc, I., Lepadatu, D., Iacob, A., Judele, L. & Bucur, R.D. (2017) Assessment of thermal Bridges effect on energy performance and condensation risk in buildings using DoE and RSM methods. European Journal of Environmental and Civil Engineering, 21(12), 1466-1484.
- 6. Borelli, D., Cavalletti, P., Marchitto, A. & Schenone, C. (2020) A comprehensive study devoted to determine linear thermal bridges transmittance in existing buildings. Energy and Building, 224, 110136.
- 7. Bui, D.K., Nguyen, T.N., Ghazlan, A., Ngo, N.T. & Ngo, T.D. (2020) Enhancing building Energy efficiency by adaptive facade: A computational optimization approach. Applied Energy, 265, 114797.
- 8. Choi, J.-S., Kim, Ch., Jang, H. & Kim, E.-J. (2022) Dynamic thermal bridge evaluation of window-wall joints using a model-based thermography method. Case Studies in Thermal Engineering, 35, 102117.
- 9. Dylla, A. (2009) Practical Thermal Physics of Buildings. Construction Joint Design School. Bydgoszcz, University Publishing House UTP in Bydgoszcz.
- 10. Dylla A. (2015) Thermal Physics of Buildings in Practice. Thermal and Humidity Calculations. Warsaw, PWN Publishing House.
- 11. Dylla, A. & Pawłowski, K. (2015) Necessary changes in the assessment of the thermal-humidity quality of elements of energy-saving buildings. In: Wesołowska, M. & Podhorecki, A. (Eds.) Energy-efficient Construction in Poland – Status and Prospects. Bydgoszcz, University Publishing House UTP in Bydgoszcz, 281-292.
- 12. Ge, J., Xue, Y. & Fan, Y. (2021) Method for evaluating and improving thermal performance of wall-to-floor thermal bridges. Energy and Buildings, 231, 110565.
- 13. Jezierski, W. & Borowska, J. (2018) The influence of the method of mounting window joinery on the heat transfer coefficient of the curtain wall with the window. Izolacje, 6, 44-49.
- 14. Krause, P. (2017) The numeric calculation of selected thermal bridges in the walls of AAC. Cement Wapno Beton, 22, 371-380.
- 15. Kim, H. & Yeo, M. (2020) Thermal bridge modeling and a dynamic analysis method using the analogy of a steady-state thermal bridge analysis and system identification process for building energy simulation: methodology and validation. Energies, 13(17), 4422.
- 16. Lu, J., Xue, Y., Wang, Z. & Fan, Y. (2020) Optimized mitigation of heat loss by avoiding wall-to-floor the thermal bridges in reinforced concrete buildings. Journal of Building Engineering, 30, 101214.
- 17. O’Grady, M., Lechowska, A.A. & Harte A.M. (2017) Infrared thermography technique as an in-situ method of assessing heat loss through thermal bridging. Energy and Buildings, 135, 20-32.
- 18. Pawłowski, K. (2020) Shaping Material Systems of External Partitions and their Joints in Terms of Heat and Humidity. Bydgoszcz, University Publishing House of the University of Technology and Life Sciences in Bydgoszcz.
- 19. Pawłowski, K. (2021) Design of external building envelopes with low energy consumption. Physical calculations of external partitions and their joints in the light of the requirements applicable from January 1, 2021. Warsaw, Grupa Wydawnicza Medium.
- 20. PN-EN ISO 6946:2017 Construction components and building elements. Thermal resistance and heat transfer coefficient. Calculation method.
- 21. PN-EN ISO 10211:2017 Thermal bridges in buildings. Heat fluxes and surface temperatures. Detailed calculations.
- 22. PN-EN ISO 13788:2017 Thermal and humidity properties of building components and building elements. Temperature of the internal surface to avoid the critical humidity of the internal Surface and condensation. Calculation methods.
- 23. PN-EN ISO 14683:2017 Thermal bridges in buildings. Linear heat transfer coefficient. Simplified methods and indicative values.
- 24. PN-EN 12831:2006 Heating installations in buildings. Heat load calculation method.
- 25. Quinten, J. & Feldheim, V. (2019) Mixed equivalent wall method for dynamic modelling of thermal bridges: Application to 2-D details of building envelope. Energy and Buildings, 183, 697-712.
- 26. Šadauskienė, J., Ramanauskas, J., Krawczyk, D.A., Klumbytė, E. & Fokaides, P.A. (2022) Investigation of thermal bridges of a new high-performance window installation using 2-D and 3-D methodology. Buildings, 12(5), 572.
- 27. Saied, A.E., Maalouf, Ch., Bejat, T. & Wurtz, E. (2021) Slab-on-grade thermal bridges: A thermal behavior and solution review. Energy and Buildings, 257, 111770.
- 28. Smusz, R., Bałon, P., Kiełbasa, B., Rejman, E., Bembenek, M. & Kowalski, Ł. (2023) Experimental and numerical characterization of thermal bridges in windows. Advances in Science and Technology Research Journal, 17(1), 315-331.
- 29. Theodosiou, T., Tsikaloudaki, K., Kontoleon, K. & Giarma, C. (2021) Assessing the accuracy of predictive thermal bridge heat flow methodologies. Renewable and Sustainable Energy Reviews, 136, 110437.
- 30. Tudiwer, D., Teichmann, F. & Korjenic, A. (2019) Thermal bridges of living wall systems. Energy and Buildings, 205, 109522.
- 31. Wouters, P., Schietecata, J., Standaert, P. & Kasperkiewicz, K. (2002) Heat and humidity assessment of thermal bridges. Warsaw, ITB Publishing House.
- 32. Xue, Y., Fan, Y., Chen, S., Wang, Z., Gao, W., Sun, Z. & Ge, J. (2023) Heat and moisture transfer in wall-to-floor thermal bridges and its influence on thermal performance. Energy and Buildings, 279, 112642.
- 33. Zhang, X., Jung, G.-J. & Rhee K.-N. (2022) Performance evaluation of thermal bridge reduction method for balcony in apartment buildings. Buildings, 12(1), 63.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75995e81-1f10-44e6-9a39-125448867dfe