Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The machining allowance variation is significant for the reliability of a part during the machining process. Usually, when the machining allowance of a part increases, the machining and production cost also increase. When the machining allowance decreases, the machining surface will have defects. The parts will produce manyscraps andreliability will decrease. The machining allowance of a part consists of multiple process machining allowances. To analyze the impact caused by machining allowance variation, the hidden quality loss and process machining allowance are combined through theprocess capability index (PCI). Then the asymmetric quadratic quality loss function (AQF) and quadratic exponential function (QEF) are used to analyze them. A prediction model of hidden quality loss of process machining allowance is proposed. On the premise that the quality characteristic value obeys normal function distribution, a numerical model is given and used to obtain process machining allowance-inherent reliability of the product. The actual case is used to compare and verify the two models.
Czasopismo
Rocznik
Tom
Strony
art. no. 171594
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wykr.
Twórcy
autor
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, China
autor
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, China
autor
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, China
autor
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, China
Bibliografia
- 1. Baker TB. Engineering quality by design: interpreting the Taguchi approach. New York: Marcel Dekker, 1990.
- 2. Chase KW, Greenwood WH, Loosli BG. Least cost tolerance allocation for mechanical assemblies with automated process selection. Manufacturing Review. 1990; 3(1): 49-59.
- 3. Chen A, Chen YK. Design of EWMA and CUSUM control charts subject to random shift sizes and quality impacts. IIE Transactions.2007; 39(12): 1127-1141, http://doi.org/10.1080/07408170701315321.
- 4. Chen T, Zheng S, Liao H, Feng J. A multi-attribute reliability allocation method considering uncertain preferences. Quality & Reliability Engineering International. 2016; 32(7): 2233-2244, http://doi.org/10.1002/qre.1930.
- 5. Chen, T, Zheng, SL, Liu, XT. Statistical reliability analysis for fuel cell vehicle based on field test data. International Journal of Reliability, Quality & Safety Engineering. 2014; 21(3): 1, http://doi.org/10.1142/S0218539314500132.
- 6. Chuang CJ,Wu CW. Determining optimal process mean and quality improvement in a profit-maximization supply chain model. Quality Technology and Quantitative Management. 2019; 16(2): 154-169, http://doi.org/10.1080/16843703.2017.1389124
- 7. Fathi Y, Poonthanomsook C. A quartic quality loss function and its properties. International Journal of Industrial and Systems Engineering. 2007; 1(1): 8-22.
- 8. Fuchs C., Baier D., Semm T. et al. Determining the machining allowance for WAAM parts. Production Engineering Research and Development. 2020; 14: 629–637, https://doi.org/10.1007/s11740-020-00982-9.
- 9. Gao YZ, Du ZJ, Li MY, Dong W. An automated approach for machining allowance evaluation of casting parts. International Journal of Computer Integrated manufacturing. 2019; 32(11): 1043-1052, https://doi.org/10.1080/0951192X.2019.1686168.
- 10. GessnerA. Optimizing body machining including variable casting allowances. Management & Production Engineering Review. 2021; 12(2): 65-74, https://doi.org/10.24425/mper.2021.137679.
- 11. Hao XZ, Li YG, Huang C, et al. An allowance allocation method based on dynamic approximation via online inspection data for deformation control of structural parts. Chinese Journal of Aeronautics. 2020; 33(12): 3495-3508, https://doi.org/10.1016/j.cja.2020.03.038.
- 12. Jeang A. Tolerance chart optimization for quality and cost. International Journal of Production Research. 1998; 36(11): 2969-2983, https://doi.org/10.1080/002075498192238.
- 13. Karabacak YE. Deep learning-based CNC milling tool wear stage estimation with multi-signal analysis. Eksploatacja i Niezawodność –Maintenance and Reliability. 2023: 25(3), https://doi.org/10.17531/ein/168082.
- 14. Kutz M. ed. Mechanical engineers’ handbook: manufacturing and management. Hoboken: Wiley, fourth edition ed, 2015.
- 15. Li SJ, Li Y, Yuan QL, Xiao JM, Zheng JM. Research on the rapid determining method for roughcast allowance and tolerance. Foundry Technology, 2005; 26(1): 10-13, https://doi.org/10.3969/j.issn.1000-8365.2005.01.004.
- 16. Li XY, Li L, Yang YF, et al. Machining deformation of single-sided component based on finishing allowance optimization. ChineseJournal of Aeronautics. 2020; 33(9): 2434-2444, https://doi.org/10.1016/j.cja.2019.09.015. (In Chinese)
- 17. Li YL, Zhang XG, Ran Y, Zhang GB. Reliability modeling and analysis for CNC machine tool based on meta‐action. Quality & Reliability Engineering International. 2021; 37(4): 1451-1467, https://doi.org/10.1002/qre.2806.
- 18. Li YL, Zhang XG, Ran Y, Zhang W, Zhang GB. Reliability and modal analysis of key meta-action unit for CNC machine tool. IEEE Access, 2019; 7: 23640-23655, https://doi.org/10.1109/ACCESS.2019.2899623.
- 19. Liu CH, Qin XC, Xuan FZ. All set theory in the fuzzy-random crack structure. Procedia Earth Planet. Sci, 2012, 5(8): 120-123, https://doi.org/10.1016/j.proeps.2012.01.020.
- 20. Liu X, Shen XH, Huang ZG. Automatic determination of machining allowance.Modern Manufacturing Engineering, 2001(9): 14-16, https://doi.org/10.16731/j.cnki.1671-3133.2001.09.007. (In Chinese)
- 21. Lu HH. Analysis of numerical value relations among form tolerances, position tolerances and dimensional tolerances. Journal of Anhui University of Science and Technology. 1995(03): 64-68. [https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKjkpgKvIT9NkGsvn6cq9Bo2Klqs4KeP5-P9mstr3rxZT9tK_4I0NBXVptPZaUPv3OwFa4WYvlqJH&uniplatform=NZKPT&src=copy]. (In Chinese)
- 22. Luo J, Liu XT, Wang HJ. Tolerance analysis for automobile transmission shaft based on minimum cost and reliability target. Science Progress. 2020; 103(4): 1-15, https://doi.org/10.1177/0036850420959177.
- 23. Mao K, Liu XT, Li SS, Wang X. Reliability analysis for mechanical partsconsidering hidden cost via the modified quality loss model. Quality & Reliability Engineering International. 2021; 37(4): 1373-1395, https://doi.org/10.1002/qre.2800.
- 24. Michael P, Evdokia X. On the relationship between process capability indices and the proportion of conformance. Quality Technology & Quantitative Management. 2016; 13(2): 207-220, https://doi.org/10.1080/16843703.2016.1169696.
- 25. Pan J. Optimization of engineering tolerance design using revised loss functions. Engineering Optimization. 2009; 2(41): 99-118, https://doi.org/10.1080/03052150802347959.
- 26. Ryan TP. Statistical methods for quality improvement. New York: Wiley, 1989.
- 27. Rogalewicz M, Kujawińska A, Feledziak A, Ensuring the reliability and reduction of quality control costs by minimizing processvariability. Eksploatacja i Niezawodnosc –Maintenance and Reliability, 2023: 25(2):162626, http://doi.org/.10.17531/ein/162626.
- 28. Shang LJ, Cai ZQ, Chen HD, Zhang S. Post-warranty maintenance optimization for products with deterioration depending on aging and shock. Quality Technology and Quantitative Management. 2019; 6(6): 651-671, https://doi.org/10.1080/16843703.2018.1509431.
- 29. Shilpa M, Naidu NVR. Quantitative evaluation of quality loss for nominal-the-best quality characteristic. Procedia Materials Science. 2014; 5: 2356-2362, https://doi.org/10.1016/j.mspro.2014.07.479.
- 30. Spiring FA. The reflected normal loss function. Can J Stat. 1993; 21: 321-330, https://doi.org/10.2307/3315758.
- 31. Taguchi G, Elsayed EA, Hsiang TC. Quality Engineering in Production Systems. Singapore: McGraw Hill International Editions, 1989.
- 32. Wu BH, Zhang Y, Liu GX, Zhang Y. Feedrate optimization method based on machining allowance optimization and constant power constraint. International Journal of Advanced Manufacturing Technology. 2021; 115(9-10): 3345-3360, https://doi.org/10.1007/s00170-021-07381-z.
- 33. Wu CW, Pearn WL, Kotz S. An overview of theory and practice on process capability indices for quality assurance. International Journal of Production Economics. 2019; 117(2): 38-359, https://doi.org/10.1016/J.IJPE.2008.11.008.
- 34. Wu XN, Dai W. Research on machining allowance distribution optimization based on processing defect risk. Procedia CIRP. 2016;56: 508-511, https://doi.org/10.1016/j.procir.2016.10.099.
- 35. Xu H, Gu L, Chen JP, Hu J, Zhao WS. Machining characteristics of nickel-based alloy with positive polarity blasting erosion arc machining. International Journal of Advanced Manufacturing Technology. 2015; 79(5-8): 937-947, https://doi.org/10.1007/s00170-015-6891-y.
- 36. Zhang DH, Zhang Y, Wu BH. Research on the Adaptive Machining Technology of Blisk. Advanced Materials Research. 2009; 69–70: 446–50,https://doi.org/10.4028/www.scientific.net/AMR.69-70.446.
- 37. Zhang ZX, Luo M, Zhang DH, Wu BH. A force-measuring based approach for feed rate optimization considering the stochasticity of machining allowance. International Journal of Advanced Manufacturing Technology. 2018; 97(5-8): 2545–2556, https://doi.org/10.1007/s00170-018-2127-2.
- 38. Zhou Y, Sun W, Ye C, Peng B, Fang X, Lin C, Wang G, Kumar A, SunW, Time-frequency Representation -enhanced TransferLearning for Tool Condition Monitoring during milling of Inconel 718. Eksploatacja i Niezawodność –Maintenance and Reliability, 2023;25(2):1-13, http://doi.org/10.17531/ein/165926.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7598d108-6c48-4f19-bab6-7e8a948be45d