PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Adding 5-Aminotetrazole to a Modified U.S. ArmyTerephthalic Acid White Smoke Composition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Military visible obscuration compositions (obscurants, smokes) play an important role on today’s battlefield. For many years, the known toxicity or ageing problems of established formulations were commonly accepted since there was a lack of alternatives. Since the U.S. Army stopped producing the AN-M8 hexachloroethane (HC) smoke grenade, the M83 terephthalic acid (TA) smoke grenade has been used in its place. This cool-burning, less toxic, but also low efficiency white smoke formulation cannot compete with HC-based formulations in terms of obscuration performance. In this context, we have explored the use of 5-aminotetrazole (5-AT) as an additive and fuel in the known TA system. Remarkably, it has been found that sugar is not necessarily required in the formulations, which has implications for the future improvement of sublimation-condensation smoke compositions, including coloured smoke compositions. In small-scale tests, it was found that replacing sucrose with 5-AT in the formulations resulted in significantly improved smoke persistence.
Słowa kluczowe
Rocznik
Strony
489--500
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, Ludwig-Maximilian University Butenandtstraße 5-13 (D), 81377 Munich, Germany
  • Department of Chemistry, Ludwig-Maximilian University Butenandtstraße 5-13 (D), 81377 Munich, Germany
autor
  • U.S. Army RDECOM-ARDEC, Pyrotechnics Technology Division, Picatinny Arsenal, New Jersey, 07806, USA
Bibliografia
  • [1] Shaw, A. P.; Diviacchi, G.; Black, E. L. Advanced Boron Carbide-based Visual Obscurants for Military Smoke Grenades. International Pyrotechnics Seminar, 40th, Colorado Springs, CO, USA, 13-18 July, 2014, 170-191.
  • [2] a) Koch, E.-C. 1916-2016: The Berger Smoke Mixture Turns 100. Propellants Explos. Pyrotech. 2016, 41, 779; b) Turetsky, A. L.; Young, G. P. Advances in Pyrotechnically Based Visual Smoke Systems. International Pyrotechnics Seminar, 13th, Grand Junction, CO, USA 1988, 805-811.
  • [3] a) Conkling, J. A.; Mocella, C. Chemistry of Pyrotechnics: Basic Principles and Theory. 2nd ed., Taylor & Francis, New York 2010; ISBN 978-1-4200-1809-7; b) Freiwald, H.; Preahauser, G.; Schießl, A. Improvements with Pyrotechnical Smoke. International Pyrotechnics Seminar, 6th, Estes Park, CO, USA 1978, 185-208.
  • [4] a) Cichowicz, J. J. Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants, HC Smoke. Vol. 4, National Academy Press, Washington D.C 1983; b) Holmes, P. S. Pneumomediastinum Associated with Inhalation of White Smoke. Mil. Med. 1999, 164: 751-752.
  • [5] a) Eaton, J. C.; Lopinto, R. J.; Palmer, W. G. Health Effects of Hexachloroethane (HC) Smoke. Accession Number ADA277838, Defense Technical Information Center (DTIC), Fort Belvoir, VA, 1994, 1-60; b) Toxicological Profile for Hexachloroethane. Agency for Toxic Substances and Disease Registry, Accession Number CBRNIAC-CB-069808, Defense Technical Information Center (DTIC), Fort Belvoir, VA, USA 1994, 1-60.
  • [6] Sabatini, J. J. Advances Toward the Development of “Green” Pyrotechnics, in Green Energetic Materials. John Wiley & Sons, Chichester, UK 2014; ISBN 9781119941293.
  • [7] a) Koch, E.-C. Special Materials in Pyrotechnics: V. Military Applications of Phosphorus and its Compounds. Propellants Explos. Pyrotech. 2008, 33: 165-176; b) Koch, E.-C.; Schneider, J. Reactions in Phosphorus based IR-screening Smoke – An Investigation of the Underlying Phenomena. Proceedings of Smoke and Obscurants Symposium, 20th, Aberdeen Proving Ground, Maryland, USA, April 1998, 3.
  • [8] a) Sordoni, N.; Heard, W.; Rouse, W. Pyrotechnical Smoke Analysis. Vol. 1, Defense Technical Information Center (DTIC), Fort Belvoir, VA, 1993; b) Lane, G. A.; Smith, W. A.; Jankowiak, E. M. Novel Pyrotechnic Compositions for Screening Smokes. International Pyrotechnics Seminar, 1st, Estes Park, CO, USA 1968, 25-39.
  • [9] a) Koch, E.-C.; Cudziło, S. Safer Pyrotechnic Obscurants Based on Phosphorus(V) Nitride. Angew. Chem. Int. Ed. 2016, 55: 15439; b) Fisher, K.; Montgomery, F.; Phipps, A.; Nugent, T.; Hubble, R. An Evaluation of Using Microencapsulated Red Phosphorus in Marine Location Marker Pyrotechnic Compositions. International Pyrotechnics Seminar, 28th, Adelaide, Australia 2001, 273-282.
  • [10] Hemmilä, M.; Hihkiö, M.; Kasanen, J.-P.; Turunen, M.; Järvelä, M.; Suhonen, S.; Pasanen, A.-L.; Norppa, H. Cytotoxicity and Genotoxicity in vitro and Irritation Potency in vivo of Two Red Phosphorus-based Pyrotechnic Smokes. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2010, 701(2): 137-144.
  • [11] Shaw, A. P.; Brusnahan, J. S.; Poret, J. C.; Morris, L. A. Thermodynamic Modeling of Pyrotechnic Smoke Compositions. ACS Sustainable Chem. Eng. 2016, 4: 2309-2315.
  • [12] Shaw, A. P.; Poret, J. C.; Gilbert, R. A.; Domanico, J. A.; Black, E. L. Development and Performance of Boron Carbide-Based Smoke Compositions. Propellants Explos. Pyrotech. 2013, 38: 622-628.
  • [13] Muse, W. T.; Anthony, J. S.; Bergmann, J. D.; Burnett, D. C.; Crouse, C. L.; Gaviola, B. P.; Thomson, S. A. Chemical and Toxicological Evaluation of Pyrotechnically Disseminated Terephthalic Acid Smoke. Drug Chem. Toxicol. 1997, 20: 293-302.
  • [14] a) Hemmilä, M.; Hihkiö, M.; Kasanen, J.-P.; Turunen, M.; Hautamäki, M.; Pasanen, A.-L.; Linnainmaa, K. In Vivo and In Vitro Evaluation of the Acute Toxicity, the Genotoxicity, and the Irritation Potency of Two Hexachloroethanebased Pyrotechnic Smokes. J. Toxicol. Environ. Health, Part A 2007, 70: 1167-1181; b) van Hulst, M.; Langenberg, J.; de Klerk, W.; Alblas, M. Acute Toxicity Resulting from Human Exposures to Military Smokes. Propellants Explos. Pyrotech. 2017, 42:17.
  • [15] Moretti, J. D.; Sabatini, J. J.; Shaw, A. P.; Gilbert, R. Promising Properties and System Demonstration of an Environmentally Benign Yellow Smoke Formulation for Hand-Held Signals. ACS Sustainable Chem. Eng. 2014, 2: 1325-1330.
  • [16] Chen, G.; Showalter, S.; Raibeck, G.; Wejsa, J. Enivronmentally Benign Battlefield Effects Black Smoke Simulator. Accession Number ADA481520, U.S. ARMY RDECOM-ARDEC, Picatinny, NJ 07806-5000, USA 2006.
  • [17] Glück, J.; Klapötke, T. M.; Rusan, M.; Shaw, A. P. Improved Efficiency by Adding 5-Aminotetrazole to Anthraquinone-Free New Blue and Green Colored Pyrotechnical Smoke Formulations. Propellants Explos. Pyrotech. 2017, 42: 131.
  • [18] Oakes, J; Gratton, P. Kinetic Investigations of the Oxidation of Methyl Orange and Substituted Arylazonaphthol Dyes by Peracids in Aqueous Solution. J. Chem. Soc., Perkin Trans. 2, 1998, 2563-2568.
  • [19] Fish, C.; Chen, G. Characterization of Magnesium Carbonate for Use in Pyrotechnic Smoke Composition as a Thermal Regulator. International Pyrotechnics Seminar, 35th, Fort Collins, CO, USA 2008, 83-93.
  • [20] Embury, J. F.; Walker, D.; Zimmermann, C. J. Screening Smoke Performance of Commercially Available Powders, II, Visible Screening by Titanium Dioxide. Accession Number ADA284072, Defense Technical Information Center (DTIC), Fort Belvoir, VA, USA 1994, 1-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7596e79f-fd58-4c68-9082-756ef84d0cf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.