Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a mini-review of key factors significantly affecting the electrical properties of nanofluids. One-step and two-step approaches, together with examples of vacuum sputtering-based techniques, chemical reduction, and mechanical mixing techniques, were explained. The crucial factors enhancing the electric and dielectric responses, such as nanofiller concentration, its type, geometry, uniformity of distribution in the base liquid as well as the base liquid’s type, temperature, chemical stability, etc., were analyzed. Special attention was paid to the impact of the parameters on electrical conductivity, permittivity, and dielectric losses. The selected models for nanofluid’s conductivity prediction have been presented. The potential and implemented applications of nanofluids in the energy-related industry branches with reference to their electrical properties have been reviewed. Examples of applications in power transformers, solar cell production processes, nanoelectrofuel flow batteries, and other electrotechnologies have been analyzed.
Czasopismo
Rocznik
Tom
Strony
1137--1160
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wz.
Twórcy
autor
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland
- Lublin University of Technology, Department of Electrical Engineering and Superconductivity Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland
autor
- Environment and Energy Laboratory, 25-39 Suizenji-Park, 862-0956 Kumamoto, Japan
autor
- Sojo University, Faculty of Computer and Information Sciences, 4-22-1 Ikeda, 860-0082 Kumamoto, Japan
autor
- University of the Ryukyus, Department of Electrical and Electronics Engineering,1 Senbaru, Nishihara, 903-0213 Okinawa, Japan
autor
- Kremenchuk Mykhailo Ostrohradskyi National University, Department of Systems of Automatic Control and Electric Drives, 20 Pershotravneva St., 39600 Kremenchuk, Ukraine
Bibliografia
- [1] Sarojini K.G.K., Manoj S.V., Singh P.K., Pradeep T., Das S.K., Electrical conductivity of ceramic and metallic nanofluids, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 417, pp. 39–46 (2013), DOI: 10.1016/j.colsurfa.2012.10.010.
- [2] Fal J., Sobczak J., Stagraczynski R., Estelle P., Zyla G., Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration, Power Technology, vol. 404, 117423 (2022), DOI: 10.1016/j.powtec.2022.117423.
- [3] Du B., Shi Y., Liu Q., Fabrication of Fe3O4@SiO2 Nanofluids with High Breakdown Voltage and Low Dielectric Loss, Coatings, vol. 9, no. 11, 716 (2019), https://www.mdpi.com/2079-6412/9/11/716.
- [4] Koutras K.N., Tegopoulos S.N., Charalampakos V.P., Kyritsis A., Gonos I.F., Pyrgioti E.C., Breakdown Performance and Partial Discharge Development in Transformer Oil-Based Metal Carbide Nanofluids, Nanomaterials, vol. 12, no. 2, 269 (2022), https://www.mdpi.com/2079-4991/12/2/269.
- [5] Kumar L.H., Kazi S.N., Masjuki H.H., Zubir M.N.M., Jahan A., Bhinitha C., Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets, Applied Thermal Engineering, vol. 192, 116916 (2021), DOI: 10.1016/j.applthermaleng.2021.116916.
- [6] Stryczewska H.D., Boiko O., Stepien M.A., Lasek P., Yamazato M., Higa A., Selected Materials and Technologies for Electrical Energy Sector, Energies, vol. 16, no. 12, 4543 (2023), DOI: 10.3390/en16124543.
- [7] Siricharoenpanich A., Wiriyasart S., Srichat A., Naphon P., Thermal cooling system with Ag/Fe3O4 nanofluids mixture as coolant for electronic devices cooling, Case Studies in Thermal Engineering, vol. 20, 100641 (2020), DOI: 10.1016/j.csite.2020.100641.
- [8] Cruz R.C., Reinshagen J., Oberacker R., Segadães A.M., Hoffmann M.J., Electrical conductivity and stability of concentrated aqueous alumina suspensions, Journal of Colloid and Interface Science, vol. 286, no. 2, pp. 579–588 (2005), DOI: 10.1016/j.jcis.2005.02.025.
- [9] Chakraborty B., Raj K.Y., Pradhan A.K., Chatterjee B., Chakravorti S., Dalai S., Investigation of Dielectric Properties of TiO2 and Al2O3 nanofluids by Frequency Domain Spectroscopy at Different Temperatures, Journal of Molecular Liquids, vol. 330, 115642 (2021), DOI: 10.1016/j.molliq.2021.115642.
- [10] Cieslinski J.T., Ronewicz K., Smolen S., Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids, Archives of Thermodynamics, vol. 36, no. 4, pp. 35–47 (2015), DOI: 10.1515/aoter-2015-0031.
- [11] Sadri R., Hosseini M., Kazi S.N., Bagheri S., Ahmed S.M., Ahmadi G., Zubir N., Sayuti M., Dahari M., Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer, Energy Conversion and Management, vol. 150, pp. 26–36 (2017), DOI: 10.1016/j.enconman.2017.07.036.
- [12] Farade R.A., Wahab N.I.A., Mansour D.E.A., Azis N.B., Jasni J.B.T., Veerasamy V., Thirumeni M., Irudayaraj A.X.R., Murthy A.S., Investigation of the Effect of Sonication Time on Dispersion Stability, Dielectric Properties, and Heat Transfer of Graphene Based Green Nanofluids, IEEE Access, vol. 9, pp. 50607–50623 (2021), DOI: 10.1109/ACCESS.2021.3069282.
- [13] Shirazi S.F.S., Gharehkhani S., Yarmand H., Badarudin A., Metselaar H.S.C., Kazi S.N., Nitrogen doped activated carbon/graphene with high nitrogen level: Green synthesis and thermo-electrical properties of its nanofluid, Materials Research, vol. 152, pp. 192–195 (2015), DOI: 10.1016/j.matlet.2015.03.110.
- [14] Zhang C., Gao L., Zhou X., Wu X., Stability and Photothermal Properties of Fe3O4 − H2O Magnetic Nanofluids, Nanomaterials, vol. 13, 1962 (2023), DOI: 10.3390/nano13131962.
- [15] Leong K.Y., Razali I., Ahmad K.Z.K., Ong H.C., Ghazali M.J., Rahman M.R.A., Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach, International Communications in Heat and Mass Transfer, vol. 90, pp. 23–28 (2018), DOI:10.1016/j.icheatmasstransfer.2017.10.005.
- [16] Ranjbarzadeh R., Moradikazerouni A., Bakhtiari R., Asadi A., Afrand M., An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles, Journal of Cleaner Production, vol. 206, pp. 1089–1100 (2019), DOI: 10.1016/j.jclepro.2018.09.205.
- [17] Islam R., Shabani B., Prediction of electrical conductivity of TiO2 water and ethylene glycol-based nanofluids for cooling application in low temperature pem fuel cells, Energy Procedia, vol. 160, pp. 550–557 (2019), DOI: 10.1016/j.egypro.2019.02.205.
- [18] Giwa S.O., Sharifpur M., Meyer J.P., Experimental investigation into heat transfer performance of water-based magnetic hybrid nanofluids in a rectangular cavity exposed to magnetic excitation, International Communications in Heat and Mass Transfer, vol. 116, 104698 (2020), DOI: 10.1016/j.icheatmasstransfer.2020.104698.
- [19] Akilu S., Baheta A.T., Sharma K.V., Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions, Journal of Molecular Liquids, vol. 246, pp. 396–405 (2017), DOI: 10.1016/j.molliq.2017.09.017.
- [20] Taheri A.A., Abdali A., Taghilou M., Alhelou H.H., Mazlumi K., Investigation of Mineral Oil-Based Nanofluids Effect on Oil Temperature Reduction and Loading Capacity Increment of Distribution Transformers, Energy Reports, vol. 7, pp. 4325–4334 (2021), DOI: 10.1016/j.egyr.2021.07.018.
- [21] Gao T., Li C.H., Zhang Y.B., Yang M., Jia D.Z., Jin T., Hou Y.L., Li R.Z., Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants, Tribology International, vol. 131, pp. 51–63 (2019), DOI: 10.1016/j.triboint.2018.10.025.
- [22] Farade R.A., Wahab N.I.A., Mansour D.E.A., Azis N.B., Jasni J.B., Veerasamy V., Vinayagam A., Kotiyal B.M., Khan T.M.Y., The Effect of Interfacial Zone Due to Nanoparticle-Surfactant Interaction on Dielectric Properties of Vegetable Oil Based Nanofluids, IEEE Access, vol. 9, pp. 107033–107045 (2021), DOI: 10.1109/ACCESS.2021.3098758.
- [23] Du B., Li J., Wang F., Yao W., Yao S., Influence of Monodisperse Fe3O4 Nanoparticle Size on Electrical Properties of Vegetable Oil-Based Nanofluids, Journal of Nanomaterials, vol. 2015, 560352 (2015), DOI: 10.1155/2015/560352.
- [24] Koutras K.N., Naxakis I.A., Antonelou A.E., Charalampakos V.P., Pyrgioti E.C., Yannopoulos S.N., Dielectric strength and stability of natural ester oil based TiO2 nanofluids, Journal of Molecular Liquids, vol. 316, 113901 (2020), DOI: 10.1016/j.molliq.2020.113901.
- [25] Hussain M.R., Khan Q., Khan A.A., Refaat S.S., Abu-Rub H., Dielectric Performance of Magneto Nanofluids for Advancing Oil-Immersed Power Transformer, vol. 8, pp. 163316–163328 (2020), DOI: 10.1109/ACCESS.2020.3021003.
- [26] Farade R.A., Wahab N.I.A., Mansour D.E.A., Azis N.B., Jasni J.B., Veerasamy V., Vinayagam A., Kotiyal B.M., Khan T.M.Y., The Effect of Interfacial Zone Due to Nanoparticle-Surfactant Interaction on Dielectric Properties of Vegetable Oil Based Nanofluids, IEEE Access, vol. 9, pp. 107033–107045 (2021), DOI: 10.1109/ACCESS.2021.3098758.
- [27] Thomas P., Hudedmani N.E., Prasath R.T.A.R., Roy N.K., Mahato S.N., Synthetic Ester Oil Based High Permittivity CaCu3Ti4O12 (CCTO) Nanofluids an Alternative Insulating Medium for Power Transformer, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 1, pp. 314−321 (2019), DOI: 10.1109/TDEI.2018.007728.
- [28] Sima W.X., Shi J., Yang Q., Huang S.S., Cao X.F., Effects of Conductivity and Permittivity of Nanoparticle on Transformer Oil Insulation Performance: Experiment and Theory, vol. 22, no. 1, pp. 380–390 (2015), DOI: 10.1109/TDEI.2014.004277.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7596df35-4a74-45fd-a6a7-1f238b88d32c