PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel approach for segmentation and counting of overlapped leukocytes in microscopic blood images

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leukocytes count in the blood smear images plays an important role in identifying the overall health of the patient. The major steps involved in leukocytes counting system are segmentation and counting. However, the counting accuracy is greatly affected due to the morphological diversity of cells, the presence of staining artifacts and the overlapped cells. Therefore, this paper introduces a new framework to segment and counting of leukocytes. To segment leukocytes, an edge strength-based Grabcut method has been proposed. Later, the leukocyte region including the overlapped cells was counted using the novel gradient circular hough transform (GCHT) method. The research work was performed on ALL-IDB and Cellavision datasets. The proposed segmentation method has yielded high precision, recall and f -measure compared to the state-of-the-art methods. Additionally, comparison analy-sis was performed between the region count obtained using the existing and the GCHT method. The overall experimental results of the work showed that the proposed framework produced more accuracy in counting the leukocytes.
Twórcy
autor
  • Department of Computer Science and Engineering, College of Engineering, Anna University, Guindy, Chennai, India
autor
  • Department of Computer Science and Engineering, College of Engineering, Anna University, Guindy, Chennai, India
Bibliografia
  • [1] Sajjad M, Khan S, Jan Z, Muhammad K, Moon H, Kwak JT, et al. Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE Access 2017;5:3475–89. http://dx.doi.org/10.1109/ACCESS.2016.2636218.
  • [2] Ghane N, Vard A, Talebi A, Nematollahy P. Segmentation of white blood cells from microscopic images using a novel combination of k-means clustering and modified watershed algorithm. J Med Signals Sens 2017;7(2):92–101. http://dx.doi.org/10.4103/2228-7477.205503.
  • [3] Negm AS, Hassan OA, Kandil AH. A decision support system for acute leukaemia classification based on digital microscopic images, vol. 54. Elsevier; 2017. http://dx.doi.org/10.1016/j.aej.2017.08.025.
  • [4] Ferdosi BJ, Nowshin S, Sabera FA. White blood cell detection and segmentation from fluorescent images with an improved algorithm using k-means clustering and morphological operators. 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT); 2018. pp. 566–70. http://dx.doi.org/10.1109/CEEICT.2018.8628068.
  • [5] Zheng X, Wang Y, Wang G, Liu J. Fast and robust segmentation of white blood cell images by self-supervised learning. Micron 2018;107:55–71. http://dx.doi.org/10.1016/j.micron.2018.01.010.
  • [6] Cao H, Liu H, Song E. Bone marrow cells detection: a technique for the microscopic image analysis. J Med Syst 2019;42(82):1–14. http://dx.doi.org/10.1007/s10916-019-1185-9.
  • [7] Rawat J, Singh A, Bhadauria H, Virmani J, Devgun JS. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng 2017;37(4):637–54. http://dx.doi.org/10.1016/j.bbe.2017.07.003.
  • [8] Mishra S, Majhi B, Sa PK. Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control 2019;47:303–11. http://dx.doi.org/10.1016/j.bspc.2018.08.012.
  • [9] Hegde RB, Prasad K, Hebbar H, Singh BMK. Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images. Multim Tools Appl 2019;42(6):1–20. http://dx.doi.org/10.1007/s10916-018-0962-1.
  • [10] Wang Y, Cao Y. Leukocyte nucleus segmentation method based on enhancing the saliency of saturation component. J Algorithms Comput Technol 2019;13:1–10. http://dx.doi.org/10.1177/1748302619845783.
  • [11] Rawat J, Singh A, Bhadauria H, Virmani J, Devgun J. Leukocyte classification using adaptive neuro-fuzzy inference system in microscopic blood images. Arab J Sci Eng 2018;43(12):7041–58.
  • [12] Moshavash Z, Danyali H, Helfroush MS. An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. J Digit Imaging 2018;31(5):1–16. http://dx.doi.org/10.1007/s10278-018-0074-y.
  • [13] Supriyanti R, Satrio G, Ramadhani Y, Siswandari W. Contour detection of leukocyte cell nucleus using morphological image. J Phys Conf Ser 2017;824:012069. http://dx.doi.org/10.1088/1742-6596/824/1/012069. IOP Science.
  • [14] Wang Q, Chang L, Zhou M, Li Q, Liu H, Guo F. A spectral and morphologic method for white blood cell classification. Optics Laser Technol 2016;84:144–8. http://dx.doi.org/10.1016/j.bspc.2018.08.012.
  • [15] Chaira T. Accurate segmentation of leukocyte in blood cell images using atanassov's intuitionistic fuzzy and interval type ii fuzzy set theory. Micron 2014;61:1–8. http://dx.doi.org/10.1016/j.micron.2014.01.004.
  • [16] Duan Y, Wang J, Hu M, Zhou M, Li Q, Sun L, et al. Leukocyte classification based on spatial and spectral features of microscopic hyperspectral images. Optics Laser Technol 2019;112:530–8. http://dx.doi.org/10.1016/j.optlastec.2018.11.057.
  • [17] Cao F, Liu Y, Huang Z, Chu J, Zhao J. Effective segmentations in white blood cell images using e-svr-based detection method. Neural Comput Appl 2019;31:6767–80. http://dx.doi.org/10.1007/s00521-018-3480-7.
  • [18] Liu Y, Cao F, Zhao J, Chu J. Segmentation of white blood cells image using adaptive location and iteration. IEEE J Biomed Health Inform 2017;21(6):1644–55. http://dx.doi.org/10.1109/JBHI.2016.2623421.
  • [19] Safuan SNM, Tomari MRM, Zakaria WNW. White blood cell (wbc) counting analysis in blood smear images using various color segmentation methods. Measurement 2018;116:543–55. http://dx.doi.org/10.1016/j.measurement.2017.11.002.
  • [20] Wang Y, Cao Y. Quick leukocyte nucleus segmentation in leukocyte counting. Comput Math Methods Med 2019;1–10. http://dx.doi.org/10.1155/2019/3072498.
  • [21] Gomolka RS, Korzynska A, Siemion K, Gabor-Siatkowska K, Klonowski W. Automatic method for assessment of proliferation index in digital images of dlbcl tissue section. Biocybern Biomed Eng 2019;39(1):30–7. http://dx.doi.org/10.1016/j.bbe.2018.09.004.
  • [22] Wang Q, Bi S, Sun M, Wang Y, Wang D, Yang S. Deep learning approach to peripheral leukocyte recognition. PLOS ONE 2019;14(6):1–18. http://dx.doi.org/10.1371/journal.pone.0218808.
  • [23] Fan H, Zhang F, Xi L, Li Z, Liu G, Xu Y. Leukocytemask: an automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. J Biophotonics 2019;12(7):1–14. http://dx.doi.org/10.1002/jbio.201800488.
  • [24] Zhao J, Zhang M, Zhou Z, Chu J, Cao F. Automatic detection and classification of leukocytes using convolutional neural networks. Med Biol Eng Comput 2017;55(8):1287–301. http://dx.doi.org/10.1007/s11517-016-1590-x.
  • [25] Di Ruberto C, Loddo A, Putzu L. A leucocytes count system from blood smear images. Mach Vis Appl 2016;27(8): 1151–60. http://dx.doi.org/10.1007/s00138-016-0812-4.
  • [26] Loddo A, Putzu L, Di Ruberto C, Fenu G. A computer-aided system for differential count from peripheral blood cell images. 2016 12th International Conference on Signal- Image Technology & Internet-Based Systems (SITIS). 2016. pp. 112–8. http://dx.doi.org/10.1109/SITIS.2016.26.
  • [27] Porcu S, Loddo A, Putzu L, Di Ruberto C. White blood cells counting via vector field convolution nuclei segmentation. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications; 2018. p. 227–34. http://dx.doi.org/10.5220/0006723202270234.
  • [28] Zheng X, Wang Y, Wang G, Chen Z. A novel algorithm based on visual saliency attention for localization and segmentation in rapidly-stained leukocyte images. Micron 2014;56:17–28. http://dx.doi.org/10.1016/j.micron.2013.09.006.
  • [29] Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground extraction using iterated graph cuts. ACM transactions on graphics (TOG), vol. 23. ACM; 2004. p. 309–14. http://dx.doi.org/10.1145/1186562.1015720.
  • [30] Taha AA, Hanbury A. Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC Med Imaging 2015;15(1):1–29. http://dx.doi.org/10.1186/s12880-015-0068-x.
  • [31] Alférez S, Merino A, Acevedo A, Puigví L, Rodellar J. Color clustering segmentation framework for image analysis of malignant lymphoid cells in peripheral blood. Med Biol Eng Comput 2019;57(6):1–19. http://dx.doi.org/10.1007/s11517-019-01954-7.
  • [32] Tareef A, Song Y, Cai W, Wang Y, Feng DD, Chen M. Automatic nuclei and cytoplasm segmentation of leukocytes with color and texture-based image enhancement. IEEE 13th International Symposium on Biomedical Imaging (ISBI); 2016. pp. 935–8.http://dx.doi.org/10.1109/ISBI.2016.7493418.
  • [33] Mohapatra S, Patra D, Kumar S, Satpathy S. Lymphocyte image segmentation using functional link neural architecture for acute leukemia detection. Biomed Eng Lett 2012;2:100–10. http://dx.doi.org/10.1007/s13534-012-0056-9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7592d38a-8ea1-4aa2-b592-54221a855cd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.