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Abstract—The data acquisition systems must be capable of 
process all the data produced by the source to ensure the highest 
level of accuracy, especially when it deals with hard real-time 
system monitoring task. However, the production of data is faster 
than the process to acquire and to process such a data. Using 
concurrency approach is an alternative to obtain the required 
level of performance and data processing.  

This paper presents the comparison between various C++ 
frameworks that by using multithreading technology and ring-
buffer data structure allow data transfer in concurrent way. The 
comparison is based on the time interval between the instant 
when data is published and the instant when the data is gathered. 
These latency measurements have been taken using the 
configuration of one producer and two consumers for all 
evaluated frameworks. The results show that using standard C++ 
libraries to develop a simple framework it is possible to achieve 
suitable performance in order to fulfill the requirements of the 
high performance data acquisition systems described. 

Index Terms—mutithreading; ring-buffer; real-time system, 
data acquisition system, c++, linux. 

I. INTRODUCTION 

This experimental evaluation of C++ multithreaded 
frameworks has been conducted as part of a project where real-
time monitoring of a power generator is required. Precisely this 
monitoring process implies massive data production generated 
for high-speed cameras. This amount of images produced by 
the cameras must be transferred in the fastest possible manner 
from the machine device to the control system. As seen in 
Figure 1, the process of gathering the raw data from hardware 
devices and propagation of them to these specialized sub-
systems of control and archiving, is considered in the 
abovementioned project as Data Acquisition System.  

 

In the context of the Data Acquisition System a variety of 
methods for transferring raw data from data sources to the 
processing systems has been propounded in the past. Today 
with the advent of multiprocessors architecture, taking 
advantage of this processing power gains importance. Most of 
the operating systems provide interfaces to use the 
multiprocessing resources; the most important is the 
multithreading technology.  

In the context of the Data Acquisition System a variety of 
methods for transferring raw data from data sources to the 
processing systems has been propounded in the past. Today 
with the advent of multiprocessors architecture, taking 
advantage of this processing power gains importance. Most of 
the operating systems provide interfaces to use the 
multiprocessing resources; the most important is the 
multithreading technology.  

The designer of C++ programming language, Bjarne 
Stroustroup  advices the use of threads when several tasks in a 
program need to progress concurrently [1] and Anthony 
Williams [2] defines concurrency as the parallel execution of 
different tasks at the same time. Ideally each of these tasks is 
running in its own processor.  

Precisely in systems where high performance data transfer 
is required, the data is accessed concurrently and most of the 
tasks should be executed concurrently, and this can be 
achieved with C++ using threads. 

It is important to emphasize that according to the project 
requirements, the software solution must be developed using 
C++ programming language in a *NIX system environment. 

II. THE DATA ACQUISITION SYSTEM 

A. The Raw Data Source 

The aforementioned power generator is monitored with 
EoSens® 3CL Full CL MC3010 high-speed cameras. The 
Figure 2 shows the maximun frame rate for given resolution of 
these cameras provided by the manufacturer [8]. 
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Fig. 1. Monitoring data workflow. 

Fig. 2. Frameset factory profiles of EoSens® 3CL Full CL MC3010 
high-speed camera [8]. 



Based on this information the cameras are able to produce 
630 Mbytes of raw data when are configured in the highest 
resolution 1696x1710 pixels. According to thechnical 
documentation the cameras are able to produce up to 180,000 
frames per second with reduced resolution [8]. 

B. The Control System 
The Control System executes the process for controlling 

the appropriate operation of the power generator. These 
controlling tasks depend on the physical time when results are 
produced, hence is considered a real-time system [9]. To carry 
on such a task, the generated images must be sent toward two 
sub-systems namely, Data Archiving and Synchronization 
System, represented in Figure 1. 

The Data Archiving subsystem is dedicated for permanent 
data storage. This storage task is not considered critical, 
because there is not restrictive time and if some failure happen 
is its operation does not imply some catastrophe for the whole 
system. 

While due to their operation mode, the Data Archiving 
subsystem is a soft real-time system, the Synchronization 
System is a well-defined hard real-time system because its 
operation is extremely critical for the monitoring and control of 
the power generator [9]. First, a 100% of accuracy is required 
because all received raw data must be transferred to the Real-
Time Monitoring subsystem to detect any failure in real-time, 
and secondly a 100% of reliability is demanded to evaluate 
permanently the quality and consistency of the transferred data. 
To fulfill these requirements, the Data Acquisition System 
must be able to transfer the frames from the data source toward 
the Control System in the same rate that they are produced. 

C. Data Acquisition System Operation 
Figure 3 presents a generic skeleton of the Data 

Acquisition System. The schema is made up by one producer 
and two consumers. The producer is responsible for taking the 
message from the source device, and for filling the available 
slot in the ring-buffer. 

 

 
Every consumer process is executed in its own processing 

thread. Specifically, the first consumer is oriented to manage 
complete data messages and sent them toward the archiving 
subsystem. And the second consumer is in charge of managing 
the synchronization data to verify the data accuracy of each 
event. 

D. The Transferred Data 
The data sent toward the consumers by the producer 

process has TIFF standardized format [11]. The message per 
se is equivalent to meta-data + raw-data. The raw-data is just 
the image generated by the cameras and the meta-data is the 
identification header of each frame.  

III. RELATED WORKS 

In the early stage of this research, to establish a state of the 
art starting point, different C++ solutions using multithreading 
and managing a ring-buffer data structure were tested; 
nevertheless only the CxxDisruptor and FastFlow were 
suitable to reach the appropiate level of performance and 
accuracy required in the preleminaries testing phases. 

A. The Disruptor Framework 

The Disruptor is an inter-threading communication 
framework based on a shared ring-buffer data structure. This 
framework, developed by LMAX-Exchange software 
development team, was designed to achieve a high 
performance alternative to bounded queues for exchanging 
data between concurrent threads [3]. This solution was 
originally developed using Java Technology; however there 
are several versions of this solution ported to C++. 

In the early stage of the evaluation process, several ported 
versions of the Disruptor were tested, nevertheless only the 
CxxDisruptor of Henrik Baastrup [4] provided the expected 
accuracy levels. 

This approach pre-allocates a fixed number of slots in a 
C++ array and deploys a bitwise arithmetic algorithm to reuse 
the ring buffer slots. The CxxDiruptor approach is based on 
atomic primitives to control which thread has the current 
access to a specific slot in the ring-buffer. 

B. The FastFlow Framework 

The FastFlow is a C++ parallel processing oriented 
programming framework advocating high-level and pattern-
based parallel programming [5]. This framework has been 
developed to provide a parallel programming abstraction and 
simplify the development of multi-core platforms. 

The main design philosophy of FastFlow is to provide 
application designers with key features for parallel 
programming (e.g. time-to-market, portability, efficiency, and 
performance portability) via suitable parallel programming 
abstractions and a carefully designed run-time support [5]. 

IV. THE SIMPLE C++ FRAMEWORK 

The relevance to make this comparison is based on the 
precept that it is possible to develop a multithreaded solution 
for high-performance data transfer with a minimalistic 
approach using standard C++ libraries. To meet this premise, 
three versions of the C++ simple framework have been 
developed. The first version has been developed using the 
C++11 standard libraries. The second deployment by using 
the Boost C++ library and the third approach uses the POSIX 
Thread API. 

Only two classes form the C++ simple framework, both of 
them are described below. 

A. The Monitor Class 

The monitor is the class responsible for keeping track of 
each event read. Each consumer has its own read slot 
controller implemented with a std::vector<int>.  The monitor 
receives the fill request from the producer by using the 
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monitor::publish method, and from this instant, the monitor 
transfers the request to the ring buffer and the ring buffer class 
increases by one the slot counter, allowing to extend the gap 
between the last slot read for each consumer and the last slot 
filled for the push request.  

The monitor class receives the consumers request to gather 
one specific message by using the monitor::gather method. 
But this is the real work of monitor, keeping track of each read 
slot by each consumer. Before transferring the requested 
message of a specific slot to the ring buffer class, the 
consumer must ask the monitor class if there is a slot to be 
read by using the monitor::next method; if any, the consumer 
must use the method monitor::gather to get the event data. 
Basically, the monitor::gather is an interface to the 
ring_buffer::gather method but being controlled by the 
monitor for tracking reasons. 

B. The Ring-Buffer Class 

The ring buffer class deploys a basic ring-buffer data 
structure, when the ring-buffer is created through the class 
creator ringbuffer<message_type>::ringbuffer(n_slots) a new 
array for storing the memory addresses of the 
<message_type> data type with n_slots of elements is created. 
Thus the entire memory of the ring-buffer is pre-allocated.  

The ring-buffer meets the required tasks by means of three 
simple methods described in Table II. 

TABLE I.   
C++STL RING-BUFFER METHODS 

Method Description 

ringbuffer::get_slot_pointer( slot ) 

Returns the memory address of the 
specific slot number. This method is 
called by the producer in order to fill 

this slot with the new message. 

ringbuffer::publish( message ) 

Increases the slot counter, specifically 
the tail of the ring buffer. This method 
is called by the producer to fill the slot 

with the specific message data. 

ringbuffer::gather( slot ) 

Returns the address of the specific slot. 
This method is called by the consumer 

to gather the specific and available 
message 

C. Producer & Consumer Algorithms 

The Figure 4 presents the basic operation of both sides of 
the data processing involved in the minimalistic C++ solution. 
Basically the producer asks the monitor for the next free slot 
in the ring-buffer. When the free slot address is returned the 
producer fills it with the content of the new message and then 
calls the publish method to inform the monitor that there is a 
new message that must be sent to all consumers. 
 

 

Within the consumer algorithm there is a call to the 
instruction thread::yield in order to inform the operating 
system that this specific thread can be rescheduled. The call of 
the instrucction thread::yield is necessary to make a brief 
pause when there is no a message to be gathered or when the 
last message has not been reached yet. 

D. Thread Affinity 

The POSIX scheduling interface provides a mechanism to 
establish a CPU affinity mask in order to establish on which 
processor a particular thread can be executed. At the moment 
when the consumer object is created, the affinity mask is 
configured by calling the function sched_setaffinity. 

E. FIFO Scheduling 

In the version of the Simple C++ Framework using POSIX 
thread API, the consumer threads are created with the 
SCHED_FIFO scheduling policy giving them high priority of 
execution. This mechanism of scheduling has been 
incorporated in order to execute with more priority the 
consumer processes than the producer process. It is necessary 
to prioritize the execution of the consumers processes because 
in the scheme producer/consumer the rate of pushing the data 
in the buffer by the producer is faster than the rate in which this 
data is taken from the buffer and processed by the consumers.  

V. EXPERIMENTAL EVALUATION 

A. The Testing Enviroment 

The evaluation has been done with a RedHat Enterprise 
Linux 7.1 (Maipo) 64bit operating system, running in a Intel® 
Core™i5 CPU M 520  @ 2.40GHz system with 4GB the 
RAM memory. The kernel version is 3.10.0-229.el7.x86_64.  

This Linux distribution is provided with the g++ (GCC) 
4.8.3 20140911 (Red Hat 4.8.3-9) compiler and all source code 
has been compiled using the flag -O3 to take advantage of all 
the optimization improvements provided by this compiler. 

The input file used contain 2,348 frames with 680x480 
pixels resolution each one, nevertheless only 1,495 have been 
used in order to simulate the production of frames by the 
camera when is configured in 680x480 pixels resolution. With 
these settings, the camera produces the highest frame rate per 
second, precisely 1,495 representing 460 Mbytes of raw data 
to be sent it each second. 

B. The Timing Process 

According to what is established by the project for which 
this assessment has been performed, the data should be taken 
from some memory buffer in order to simulate the frame 
production from the cameras. This is achieved through the 
mapping file mechanism provided by all of *NIX like 
operating systems. It should be pointed out that mapped 
memory does not only allow accessing the content of a file in 
shared way, but it can be applied to communication between 
processes as well [10]. 

Following the pattern presented in Figure 5, the producer 
maps the sample data file into memory by means of mmap  
call [10]. Then reads sequentially the mapped test file frame 

Fig. 4. Publishing and gathering algorithms. 



by frame, and fills the ring-buffer with each frame. Before 
invoking the method to submit the event in the ring-buffer, 
each event is identified with an integer number. This 
identification number is necessary to associate every timing 
snapshot taken in the producer side with their counterpart in 
the consumer side, in order to calculate the latency of each 
event of both consumers.  

 

The sub-routine START EVENT TIMING is executed 
precisely before the event is published to a specific slot of the 
ring-buffer, internally in this sub-routing, the start time 
measurement is taken by calling the time function 
clock_gettime(CLOCK_REALTIME,&timespec) where 
CLOCK_REALTIME refers to the system-wide real-time 
clock and &timespec to the data structure where the clock 
value are stored. 

Concurrently to the event publishing task, each consumer 
checks if there is some event to be read. If any, the consumer 
takes the message. Immediately after the message is gathered 
by the consumer, the sub-routine END EVENT TIMING is 
called and inside of this sub-routine the stop time measurement 
is taken by calling the same function shown above. 

After reaching the end of the data, each consumer dumps 
all the time measurements stored in the temporary array to a 
binary file. Each consumer has its own binary file with 
measurements. Also, the producer, after waiting for the end of 
each consumer, dumps all the time measurements to its own 
binary file. 

C. The Data Processing 

The output data files containing time measurements were 
generated after execute each C++ framework for one million 
of messages and with different number of slots in the ring-

buffer, starting from 256 and being increased by twice up to 
8192 slots. This approach has been taken because of the 
operation of CxxDisruptor and the developed C++ 
frameworks use bitwise to calculate the next wrap of the  
ring-buffer, and the number of the slots must be a 2n number. 

For each execution of the timing process, three files are 
generated, one file generated by the producer containing the 
time measurements of the instant when the message is 
published and two files produced by the consumers containing 
the time measurements  when the messages is gathered.  

In batch mode the timing data files are processed verifying 
the correspondence of each measurement by using the 
identification of each message. At the same time, the 
publishing time is subtracted from the gathering time. In this 
point, there are two time differences, one for each consumer. 
The greatest difference between the two is taken as the latency 
time taken for a specific message. The results analysis is based 
on this latency time calculation. 

VI. RESULTS 

A. Framework Comparison 

By means the latency averages reported in Table II it can 
be established that the C++Boost deployment has the lowest 
latency for each configuration of slots number in the ring-
buffer evaluated. Nevertheless, the latency average increases 
directly proportional with the number of slots, in contrast with 
the assumption that more slots represent less latency. This 
behavior is also presented by C++STL and CxxDisruptor 
frameworks. 

TABLE II.   
C++ FRAMEWORKS AVERAGE LATENCY TIME* 

# Slots C++ Boost CxxDisruptor FastFlow Pthread C++ STL 

256 201 202 829 221 239 

512 174 213 823 200 251 

1024 207 210 825 213 238 

2048 197 4298 830 230 312 

4096 207 4531 821 209 415 

8192 210 9351 823 225 456 
 * nanoseconds. 

Only the FastFlow framework presents a regular trend 
regardless of the number of slots configured in the ring-buffer. 
However, the latency averages for each configuration of slots 
are higher than the remaining frameworks. Only the 
CxxDisruptor presents more average latency in the 2018, 4096 
and 8192 slots than FastFlow framework. 

B. Latency 

The Figure 6(b) reflects the latency measurements for the 
CxxDisruptor framework and reports the expected behavior 
for a message latency because the 97% of the messages were 
sent in two hundred nanoseconds or less. Furthermore, this 
behavior is constant for all configurations of slots in the ring-
buffer evaluated. 

The FastFlow’s latency measurements are represented in 
the Figure 6(c). This framework is not suitable for high 
performance data transfer because the latency measurement 
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results are higher than four hundred nanoseconds and the gap 
goes from four hundred till five thousand nanoseconds which 
is large compared with the rest of the frameworks whose gaps 
are between two hundred and four hundred nanoseconds. 

C. Affinity Mask 

The comparison between the Figure 6(e) against  
Figure 6(f) shows that most of events have a latency around 
three hundred nanoseconds. This means that the usage of the 
POSIX scheduling affinity mask it does not have a 
considerable impact in performance. However, a consistent 
latency time is shown in the Figure 6(e). This kind of behavior 
is useful in real-time systems design because a prediction of 
latency time can be done with a high percent of certainty. 

D. FIFO Scheduling 

The creation of consumer threads with the SHED_FIFO 
policy in this experiment has not represented an increment in 
performance. The frameworks implemented with C++ Boost 
Library and C++ STL; Figure 6(a) and Figure 6(b) 
respectively, have produced similar results than the 
frameworks using POSIX thread scheduling policy FIFO. 
 

 

In addition, the framework using C++ Boost Library 
communicates most of the events with a latency time around 
the two hundred nanoseconds (see Figure 6(a)), this is a better 
result that reported by the frameworks using POSIX thread 
technology. 

E. CPU Usage 

The experiment reports that, the CPU usage is between the 
60% and 80%. Nevertheless the FastFlow framework makes 
use of the CPU above of the 80% and in some parts of the 
experiment reaches the 100% of CPU utilization (see Figure 
7(c)). This aspect has direct relationship with the latency time 
reported in the Figure 6(c). The algorithm used for the 
FastFlow framework produce high levels of contention, 
thereby increasing the latency levels and the CPU overload. 

The Figure 7(d) evinces that the solution using C++ STL 
reaches the 100% of CPU utilization in some points of the 
processing. This peaks of 100% CPU usage  are due to that 
this simple solution uses the std::this_thread::yield function 
within the a spin-lock loop, yielding to the operating system 
the task of rescheduling the thread and evidently this 
mechanism produce a CPU overload. 

 

 

 
 (a) (b) 
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Fig. 6. C++ frameworks latency mesuarements. 
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Fig. 7. C++ frameworks CPU usage percentages. 



The Figure 7(b) presents the CPU usage of CxxDisruptor 
framework. As with latency measurements, the CxxDisruptor 
presents an efficient CPU usage, considering that yielding 
CPU resources to the operating system makes easier the 
rescheduling process and the threads can run more frequently. 

VII. CONCLUSIONS 

In this paper it has been shown that there are suitable C++ 
frameworks for development a High Performance Data 
Acquisition Systems with a 100% of accuracy.  Although the 
CxxDisruptor framework has produced the best results in this 
empirical comparison, the results presented in this paper report 
that it is possible to develop a simple C++ framework using 
C++ standard libraries and POSIX threads API, obtaining 
satisfactory results related to performance and accuracy. 

The addition of the SCHED_FIFO and the affinity mask 
did not provide the expected performance improving for the 
Simple C++ Framework. However, these options are well 
related with the operating system, which means that a tuning 
process should be developed to establish the better operating 
system configuration suitable for these options in order to 
achieve the expected results. 

It is important underline that all the C++ frameworks 
evaluated can process the 90% of message in lower time than 
669 microseconds which is the rate production of the camera 
in for the simulated frame rate, namely 1495 frames per 
second. Nevertheless, 10% of the messages have a variable 
latency and in some cases could be greater than  
669 microseconds causing loss of messages which is not 
acceptable for the project.  

There is a correlation between the latency time and the 
CPU usage. When the operating system has CPU resources 
available, the rescheduling process is faster, allowing to the 
threads run more frequently thereby reducing the latency time. 

The next step of this research is to improve the 
communication between threads by means of shared-memory 
condition variables and kernel messaging queuing 
technologies. These approaches are the start point to separate 
each task in different process to adhere the solution to the 
project requirements.  
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