
A Simple Multithreaded C++ Framework
for High-Performance Data Acquisition Systems

Rolando Inglés, Piotr Perek, Mariusz Orlikowski, and Andrzej Napieralski

Abstract—The data acquisition systems must be capable of
process all the data produced by the source to ensure the highest
level of accuracy, especially when it deals with hard real-time
system monitoring task. However, the production of data is faster
than the process to acquire and to process such a data. Using
concurrency approach is an alternative to obtain the required
level of performance and data processing.

This paper presents the comparison between various C++
frameworks that by using multithreading technology and ring-
buffer data structure allow data transfer in concurrent way. The
comparison is based on the time interval between the instant
when data is published and the instant when the data is gathered.
These latency measurements have been taken using the
configuration of one producer and two consumers for all
evaluated frameworks. The results show that using standard C++
libraries to develop a simple framework it is possible to achieve
suitable performance in order to fulfill the requirements of the
high performance data acquisition systems described.

Index Terms—mutithreading; ring-buffer; real-time system,
data acquisition system, c++, linux.

I. INTRODUCTION

This experimental evaluation of C++ multithreaded
frameworks has been conducted as part of a project where real-
time monitoring of a power generator is required. Precisely this
monitoring process implies massive data production generated
for high-speed cameras. This amount of images produced by
the cameras must be transferred in the fastest possible manner
from the machine device to the control system. As seen in
Figure 1, the process of gathering the raw data from hardware
devices and propagation of them to these specialized sub-
systems of control and archiving, is considered in the
abovementioned project as Data Acquisition System.

In the context of the Data Acquisition System a variety of
methods for transferring raw data from data sources to the
processing systems has been propounded in the past. Today
with the advent of multiprocessors architecture, taking
advantage of this processing power gains importance. Most of
the operating systems provide interfaces to use the
multiprocessing resources; the most important is the
multithreading technology.

In the context of the Data Acquisition System a variety of
methods for transferring raw data from data sources to the
processing systems has been propounded in the past. Today
with the advent of multiprocessors architecture, taking
advantage of this processing power gains importance. Most of
the operating systems provide interfaces to use the
multiprocessing resources; the most important is the
multithreading technology.

The designer of C++ programming language, Bjarne
Stroustroup advices the use of threads when several tasks in a
program need to progress concurrently [1] and Anthony
Williams [2] defines concurrency as the parallel execution of
different tasks at the same time. Ideally each of these tasks is
running in its own processor.

Precisely in systems where high performance data transfer
is required, the data is accessed concurrently and most of the
tasks should be executed concurrently, and this can be
achieved with C++ using threads.

It is important to emphasize that according to the project
requirements, the software solution must be developed using
C++ programming language in a *NIX system environment.

II. THE DATA ACQUISITION SYSTEM

A. The Raw Data Source

The aforementioned power generator is monitored with
EoSens® 3CL Full CL MC3010 high-speed cameras. The
Figure 2 shows the maximun frame rate for given resolution of
these cameras provided by the manufacturer [8].

This work was supported by Erasmus Mundus/LAMENITEC project.
Any opinions, findings, conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of Erasmus
Mundus/LAMENITEC project.

R. Inglés, P. Perek, M. Orlikowski and A. Napieralski are with the
Department of Microelectronics and Computer Science, Lodz University of
Technology, ul. Wolczanska 221/223, 90-924 Lodz, Poland (e-mails:
{roling,pperek,mariuszo,napier}@dmcs.pl)

Fig. 1. Monitoring data workflow.

Fig. 2. Frameset factory profiles of EoSens® 3CL Full CL MC3010
high-speed camera [8].

Based on this information the cameras are able to produce
630 Mbytes of raw data when are configured in the highest
resolution 1696x1710 pixels. According to thechnical
documentation the cameras are able to produce up to 180,000
frames per second with reduced resolution [8].

B. The Control System
The Control System executes the process for controlling

the appropriate operation of the power generator. These
controlling tasks depend on the physical time when results are
produced, hence is considered a real-time system [9]. To carry
on such a task, the generated images must be sent toward two
sub-systems namely, Data Archiving and Synchronization
System, represented in Figure 1.

The Data Archiving subsystem is dedicated for permanent
data storage. This storage task is not considered critical,
because there is not restrictive time and if some failure happen
is its operation does not imply some catastrophe for the whole
system.

While due to their operation mode, the Data Archiving
subsystem is a soft real-time system, the Synchronization
System is a well-defined hard real-time system because its
operation is extremely critical for the monitoring and control of
the power generator [9]. First, a 100% of accuracy is required
because all received raw data must be transferred to the Real-
Time Monitoring subsystem to detect any failure in real-time,
and secondly a 100% of reliability is demanded to evaluate
permanently the quality and consistency of the transferred data.
To fulfill these requirements, the Data Acquisition System
must be able to transfer the frames from the data source toward
the Control System in the same rate that they are produced.

C. Data Acquisition System Operation
Figure 3 presents a generic skeleton of the Data

Acquisition System. The schema is made up by one producer
and two consumers. The producer is responsible for taking the
message from the source device, and for filling the available
slot in the ring-buffer.

Every consumer process is executed in its own processing

thread. Specifically, the first consumer is oriented to manage
complete data messages and sent them toward the archiving
subsystem. And the second consumer is in charge of managing
the synchronization data to verify the data accuracy of each
event.

D. The Transferred Data
The data sent toward the consumers by the producer

process has TIFF standardized format [11]. The message per
se is equivalent to meta-data + raw-data. The raw-data is just
the image generated by the cameras and the meta-data is the
identification header of each frame.

III. RELATED WORKS

In the early stage of this research, to establish a state of the
art starting point, different C++ solutions using multithreading
and managing a ring-buffer data structure were tested;
nevertheless only the CxxDisruptor and FastFlow were
suitable to reach the appropiate level of performance and
accuracy required in the preleminaries testing phases.

A. The Disruptor Framework

The Disruptor is an inter-threading communication
framework based on a shared ring-buffer data structure. This
framework, developed by LMAX-Exchange software
development team, was designed to achieve a high
performance alternative to bounded queues for exchanging
data between concurrent threads [3]. This solution was
originally developed using Java Technology; however there
are several versions of this solution ported to C++.

In the early stage of the evaluation process, several ported
versions of the Disruptor were tested, nevertheless only the
CxxDisruptor of Henrik Baastrup [4] provided the expected
accuracy levels.

This approach pre-allocates a fixed number of slots in a
C++ array and deploys a bitwise arithmetic algorithm to reuse
the ring buffer slots. The CxxDiruptor approach is based on
atomic primitives to control which thread has the current
access to a specific slot in the ring-buffer.

B. The FastFlow Framework

The FastFlow is a C++ parallel processing oriented
programming framework advocating high-level and pattern-
based parallel programming [5]. This framework has been
developed to provide a parallel programming abstraction and
simplify the development of multi-core platforms.

The main design philosophy of FastFlow is to provide
application designers with key features for parallel
programming (e.g. time-to-market, portability, efficiency, and
performance portability) via suitable parallel programming
abstractions and a carefully designed run-time support [5].

IV. THE SIMPLE C++ FRAMEWORK

The relevance to make this comparison is based on the
precept that it is possible to develop a multithreaded solution
for high-performance data transfer with a minimalistic
approach using standard C++ libraries. To meet this premise,
three versions of the C++ simple framework have been
developed. The first version has been developed using the
C++11 standard libraries. The second deployment by using
the Boost C++ library and the third approach uses the POSIX
Thread API.

Only two classes form the C++ simple framework, both of
them are described below.

A. The Monitor Class

The monitor is the class responsible for keeping track of
each event read. Each consumer has its own read slot
controller implemented with a std::vector<int>. The monitor
receives the fill request from the producer by using the

Fig. 3. Data Acquisition System block diagram.

monitor::publish method, and from this instant, the monitor
transfers the request to the ring buffer and the ring buffer class
increases by one the slot counter, allowing to extend the gap
between the last slot read for each consumer and the last slot
filled for the push request.

The monitor class receives the consumers request to gather
one specific message by using the monitor::gather method.
But this is the real work of monitor, keeping track of each read
slot by each consumer. Before transferring the requested
message of a specific slot to the ring buffer class, the
consumer must ask the monitor class if there is a slot to be
read by using the monitor::next method; if any, the consumer
must use the method monitor::gather to get the event data.
Basically, the monitor::gather is an interface to the
ring_buffer::gather method but being controlled by the
monitor for tracking reasons.

B. The Ring-Buffer Class

The ring buffer class deploys a basic ring-buffer data
structure, when the ring-buffer is created through the class
creator ringbuffer<message_type>::ringbuffer(n_slots) a new
array for storing the memory addresses of the
<message_type> data type with n_slots of elements is created.
Thus the entire memory of the ring-buffer is pre-allocated.

The ring-buffer meets the required tasks by means of three
simple methods described in Table II.

TABLE I.
C++STL RING-BUFFER METHODS

Method Description

ringbuffer::get_slot_pointer(slot)

Returns the memory address of the
specific slot number. This method is
called by the producer in order to fill

this slot with the new message.

ringbuffer::publish(message)

Increases the slot counter, specifically
the tail of the ring buffer. This method
is called by the producer to fill the slot

with the specific message data.

ringbuffer::gather(slot)

Returns the address of the specific slot.
This method is called by the consumer

to gather the specific and available
message

C. Producer & Consumer Algorithms

The Figure 4 presents the basic operation of both sides of
the data processing involved in the minimalistic C++ solution.
Basically the producer asks the monitor for the next free slot
in the ring-buffer. When the free slot address is returned the
producer fills it with the content of the new message and then
calls the publish method to inform the monitor that there is a
new message that must be sent to all consumers.

Within the consumer algorithm there is a call to the
instruction thread::yield in order to inform the operating
system that this specific thread can be rescheduled. The call of
the instrucction thread::yield is necessary to make a brief
pause when there is no a message to be gathered or when the
last message has not been reached yet.

D. Thread Affinity

The POSIX scheduling interface provides a mechanism to
establish a CPU affinity mask in order to establish on which
processor a particular thread can be executed. At the moment
when the consumer object is created, the affinity mask is
configured by calling the function sched_setaffinity.

E. FIFO Scheduling

In the version of the Simple C++ Framework using POSIX
thread API, the consumer threads are created with the
SCHED_FIFO scheduling policy giving them high priority of
execution. This mechanism of scheduling has been
incorporated in order to execute with more priority the
consumer processes than the producer process. It is necessary
to prioritize the execution of the consumers processes because
in the scheme producer/consumer the rate of pushing the data
in the buffer by the producer is faster than the rate in which this
data is taken from the buffer and processed by the consumers.

V. EXPERIMENTAL EVALUATION

A. The Testing Enviroment

The evaluation has been done with a RedHat Enterprise
Linux 7.1 (Maipo) 64bit operating system, running in a Intel®
Core™i5 CPU M 520 @ 2.40GHz system with 4GB the
RAM memory. The kernel version is 3.10.0-229.el7.x86_64.

This Linux distribution is provided with the g++ (GCC)
4.8.3 20140911 (Red Hat 4.8.3-9) compiler and all source code
has been compiled using the flag -O3 to take advantage of all
the optimization improvements provided by this compiler.

The input file used contain 2,348 frames with 680x480
pixels resolution each one, nevertheless only 1,495 have been
used in order to simulate the production of frames by the
camera when is configured in 680x480 pixels resolution. With
these settings, the camera produces the highest frame rate per
second, precisely 1,495 representing 460 Mbytes of raw data
to be sent it each second.

B. The Timing Process

According to what is established by the project for which
this assessment has been performed, the data should be taken
from some memory buffer in order to simulate the frame
production from the cameras. This is achieved through the
mapping file mechanism provided by all of *NIX like
operating systems. It should be pointed out that mapped
memory does not only allow accessing the content of a file in
shared way, but it can be applied to communication between
processes as well [10].

Following the pattern presented in Figure 5, the producer
maps the sample data file into memory by means of mmap
call [10]. Then reads sequentially the mapped test file frame

Fig. 4. Publishing and gathering algorithms.

by frame, and fills the ring-buffer with each frame. Before
invoking the method to submit the event in the ring-buffer,
each event is identified with an integer number. This
identification number is necessary to associate every timing
snapshot taken in the producer side with their counterpart in
the consumer side, in order to calculate the latency of each
event of both consumers.

The sub-routine START EVENT TIMING is executed
precisely before the event is published to a specific slot of the
ring-buffer, internally in this sub-routing, the start time
measurement is taken by calling the time function
clock_gettime(CLOCK_REALTIME,×pec) where
CLOCK_REALTIME refers to the system-wide real-time
clock and ×pec to the data structure where the clock
value are stored.

Concurrently to the event publishing task, each consumer
checks if there is some event to be read. If any, the consumer
takes the message. Immediately after the message is gathered
by the consumer, the sub-routine END EVENT TIMING is
called and inside of this sub-routine the stop time measurement
is taken by calling the same function shown above.

After reaching the end of the data, each consumer dumps
all the time measurements stored in the temporary array to a
binary file. Each consumer has its own binary file with
measurements. Also, the producer, after waiting for the end of
each consumer, dumps all the time measurements to its own
binary file.

C. The Data Processing

The output data files containing time measurements were
generated after execute each C++ framework for one million
of messages and with different number of slots in the ring-

buffer, starting from 256 and being increased by twice up to
8192 slots. This approach has been taken because of the
operation of CxxDisruptor and the developed C++
frameworks use bitwise to calculate the next wrap of the
ring-buffer, and the number of the slots must be a 2n number.

For each execution of the timing process, three files are
generated, one file generated by the producer containing the
time measurements of the instant when the message is
published and two files produced by the consumers containing
the time measurements when the messages is gathered.

In batch mode the timing data files are processed verifying
the correspondence of each measurement by using the
identification of each message. At the same time, the
publishing time is subtracted from the gathering time. In this
point, there are two time differences, one for each consumer.
The greatest difference between the two is taken as the latency
time taken for a specific message. The results analysis is based
on this latency time calculation.

VI. RESULTS

A. Framework Comparison

By means the latency averages reported in Table II it can
be established that the C++Boost deployment has the lowest
latency for each configuration of slots number in the ring-
buffer evaluated. Nevertheless, the latency average increases
directly proportional with the number of slots, in contrast with
the assumption that more slots represent less latency. This
behavior is also presented by C++STL and CxxDisruptor
frameworks.

TABLE II.
C++ FRAMEWORKS AVERAGE LATENCY TIME*

Slots C++ Boost CxxDisruptor FastFlow Pthread C++ STL

256 201 202 829 221 239

512 174 213 823 200 251

1024 207 210 825 213 238

2048 197 4298 830 230 312

4096 207 4531 821 209 415

8192 210 9351 823 225 456
 * nanoseconds.

Only the FastFlow framework presents a regular trend
regardless of the number of slots configured in the ring-buffer.
However, the latency averages for each configuration of slots
are higher than the remaining frameworks. Only the
CxxDisruptor presents more average latency in the 2018, 4096
and 8192 slots than FastFlow framework.

B. Latency

The Figure 6(b) reflects the latency measurements for the
CxxDisruptor framework and reports the expected behavior
for a message latency because the 97% of the messages were
sent in two hundred nanoseconds or less. Furthermore, this
behavior is constant for all configurations of slots in the ring-
buffer evaluated.

The FastFlow’s latency measurements are represented in
the Figure 6(c). This framework is not suitable for high
performance data transfer because the latency measurement

Fig. 5. Publishing and gathering algorithms.

results are higher than four hundred nanoseconds and the gap
goes from four hundred till five thousand nanoseconds which
is large compared with the rest of the frameworks whose gaps
are between two hundred and four hundred nanoseconds.

C. Affinity Mask

The comparison between the Figure 6(e) against
Figure 6(f) shows that most of events have a latency around
three hundred nanoseconds. This means that the usage of the
POSIX scheduling affinity mask it does not have a
considerable impact in performance. However, a consistent
latency time is shown in the Figure 6(e). This kind of behavior
is useful in real-time systems design because a prediction of
latency time can be done with a high percent of certainty.

D. FIFO Scheduling

The creation of consumer threads with the SHED_FIFO
policy in this experiment has not represented an increment in
performance. The frameworks implemented with C++ Boost
Library and C++ STL; Figure 6(a) and Figure 6(b)
respectively, have produced similar results than the
frameworks using POSIX thread scheduling policy FIFO.

In addition, the framework using C++ Boost Library
communicates most of the events with a latency time around
the two hundred nanoseconds (see Figure 6(a)), this is a better
result that reported by the frameworks using POSIX thread
technology.

E. CPU Usage

The experiment reports that, the CPU usage is between the
60% and 80%. Nevertheless the FastFlow framework makes
use of the CPU above of the 80% and in some parts of the
experiment reaches the 100% of CPU utilization (see Figure
7(c)). This aspect has direct relationship with the latency time
reported in the Figure 6(c). The algorithm used for the
FastFlow framework produce high levels of contention,
thereby increasing the latency levels and the CPU overload.

The Figure 7(d) evinces that the solution using C++ STL
reaches the 100% of CPU utilization in some points of the
processing. This peaks of 100% CPU usage are due to that
this simple solution uses the std::this_thread::yield function
within the a spin-lock loop, yielding to the operating system
the task of rescheduling the thread and evidently this
mechanism produce a CPU overload.

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 6. C++ frameworks latency mesuarements.

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 7. C++ frameworks CPU usage percentages.

The Figure 7(b) presents the CPU usage of CxxDisruptor
framework. As with latency measurements, the CxxDisruptor
presents an efficient CPU usage, considering that yielding
CPU resources to the operating system makes easier the
rescheduling process and the threads can run more frequently.

VII. CONCLUSIONS

In this paper it has been shown that there are suitable C++
frameworks for development a High Performance Data
Acquisition Systems with a 100% of accuracy. Although the
CxxDisruptor framework has produced the best results in this
empirical comparison, the results presented in this paper report
that it is possible to develop a simple C++ framework using
C++ standard libraries and POSIX threads API, obtaining
satisfactory results related to performance and accuracy.

The addition of the SCHED_FIFO and the affinity mask
did not provide the expected performance improving for the
Simple C++ Framework. However, these options are well
related with the operating system, which means that a tuning
process should be developed to establish the better operating
system configuration suitable for these options in order to
achieve the expected results.

It is important underline that all the C++ frameworks
evaluated can process the 90% of message in lower time than
669 microseconds which is the rate production of the camera
in for the simulated frame rate, namely 1495 frames per
second. Nevertheless, 10% of the messages have a variable
latency and in some cases could be greater than
669 microseconds causing loss of messages which is not
acceptable for the project.

There is a correlation between the latency time and the
CPU usage. When the operating system has CPU resources
available, the rescheduling process is faster, allowing to the
threads run more frequently thereby reducing the latency time.

The next step of this research is to improve the
communication between threads by means of shared-memory
condition variables and kernel messaging queuing
technologies. These approaches are the start point to separate
each task in different process to adhere the solution to the
project requirements.

REFERENCES
[1] B. Stroustrup, The C++ Programming Language, Fourth Edition,

Pearson Education Inc., 2013.
[2] A. Williams, C++ Concurrency in Action, Manning Publications Co,

2012.
[3] LMAX-Exchange Disruptor, Source:

https://lmax-exchange.github.io/disruptor/
[4] Implementation of the LMAX Disruptor pattern in C++,

Source: http://sourceforge.net/projects/cxxdisruptor/
[5] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “FastFlow:

high-level and efficient streaming on multi-core,” in Programming
Multi-core and Many-core Computing Systems, S. Pllana and F. Xhafa,
Ed., Wiley, 2014.

[6] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M.
Torquati. Accelerating code on multi- cores with fastflow. In Proc. of
17th Intl. Euro-Par 2011 Parallel Processing, volume 6853 of LNCS,
pages 170–181, Bordeaux, France, Aug. 2011. Springer.

[7] V. Martin, V. Moncada, J.-M. Travere. Challenges of Video Monitoring
for Phenomenological Diagnostics in Present and Future Tokamaks.
2011. <hal-00609877>

[8] EoSens® 3CL Camera Manual, Rev. 1.01, Copyright © 2010 Mikrotron
GmbH.

[9] H. Kopetz, Real-Time Systems, Design Principles for Distributed
Embedded Applications. Second Edition, Chaper 1, Springer, 2011.

[10] M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming,
First Edition, New Riders Publishing, 2001.

[11] TIFF Revision 6.0, Adobe Developers Association, 1992.

Rolando Inglés is a Ph.D. student at Department of
Microelectronics and Computer Science of the Lodz
University of Technology, Poland. He received
B.Eng. degree at Systems Engineering and
Computing in 1996 from the University of
Technology of El Salvador. In 2004, he received the
M.Sc. degree at Systems Engineering from the
Autonomous University of Baja California, United
Mexican States. His research interests are in inter-
process communication mechanisms and data

structure related with high-performance data transfer in UNIX-like operating
systems.

Piotr Perek received the MSc degree in the field of
Electronics and Telecommunications at the Lodz
University of Technology in 2010. He continues his
education as a PhD student at the Department of
Microelectronics and Computer Science Lodz
University of Technology. His interests include
embedded systems, programmable devices and
software development. His recent research concerns
the development of control and data acquisition
systems based on ATCA, MicroTCA and AMC
standards.

Mariusz Orlikowski was born in 1971. He received
MSc and PhD degrees in electrical engineering from
Lodz University of Technology in 1995 and 2000
respectively. He is currently an Associate Professor
in the Department of Microelectronics and Computer
Science Lodz University of Technology. His
research interests include behavioral modelling using
Hardware Description Languages, object oriented
programming, distributed programming of data
acquisition and processing systems.

Andrzej Napieralski received the M.Sc. and Ph.D.
degrees from the Lodz University of Technology
(TUL) in 1973 and 1977, respectively, and a D.Sc.
degree in electronics from the Warsaw University of
Technology (Poland) and in microelectronics from
the Université de Paul Sabatié (France) in 1989.
Since 1996 he has been the Director of the
Department of Microelectronics and Computer
Science. Between 2002 and 2008 he held a position
of the Vice-President of TUL. He is an author or co-
author of over 950 publications and editor of 21

conference proceedings and 12 scientific Journals. He supervised 48 PhD
theses; six of them received the price of the Prime Minister of Poland. In 2008
he received the Degree of Honorary Doctor of Yaroslaw the Wise Novgorod
State University (Russia).

