PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Współczesne technologie w zwiększaniu bezpieczeństwa w motoryzacji

Identyfikatory
Warianty tytułu
EN
Current technologies in safety improvement of the automotive industry
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowano przegląd współczesnych technik stosowanych w przemyśle motoryzacyjnym. W celu zwiększenia stopnia bezpieczeństwa w transporcie drogowym i zmniejszenia skutków wypadków samochodowych prowadzone są liczne badania pozwalające na przewidywanie końcowego efektu zderzeń przy niewielkich prędkościach przemieszczania. Badania te prowadzone są z wykorzystaniem dwóch technik: numerycznej i doświadczalnej, co pozwala znacznie zwiększyć wytrzymałość na zniszczenie takich elementów konstrukcyjnych samochodu jak belka zderzaka lub łącznik kompensacyjny. Autorzy przedstawiają liczne prace i metody oraz stosowane materiały w celu optymalizacji kształtu, co pozwala na maksymalizację pochłanianej podczas zderzenia energii. W związku z tym, że łącznik kompensacyjny elementu zderzaka jest jednym z najważniejszych elementów pozwalających na kontrolowane pochłaniane energii nagromadzonej podczas zderzenia, przedstawiono na zakończenie pełen proces technologiczny wykonania tej części. W wyniku przeprowadzonej symulacji MES zoptymalizowano kształt ze względu na wytrzymałość zniszczeniową co pozwala na spełnienie wymogów kontrolowanej kolizji przy niewielkich prędkościach.
EN
The paper presents a quick survey of current technologies in automotive industry. To reach a high level of safety requirement and minimize the occurrence and consequences of automobile accidents number of studies have been investigated on the prediction the crash event. These investigations are performed by both techniques: numerical and experimental and they can significantly improved crashworthiness of selected auto-parts such a bumper-beam or crash-box under impact loadings. The authors describe several different methods and materials to optimized the shape of these parts for maximum energy absorption. Since the crash-box is one of the most important automotive parts for crash energy absorption a fully dialed process technology of those part was simulated using FEM and presented in this study. As a result, the optimum shape of crash-box was designed where the maximum crashworthiness can satisfy safety requirements for low velocity impact.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
6166--6173, CD 2
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • Politechnika Warszawska, Wydział Inżynierii Produkcji, 02-524 Warszawa, ul. Narbutta 85, Tel: +48 22 234 86 00
  • Politechnika Warszawska, Wydział Inżynierii Produkcji, 02-524 Warszawa, ul. Narbutta 85, Tel: +48 22 234 84 21
autor
  • Politechnika Śląska, Wydział Inżynierii Materiałowej i Metalurgii, 40-019 Katowice, ul. Krasińskiego 8, tel. 32 6034272
Bibliografia
  • 1. Ambrozinski M., Niechajowicz A., Gronostajski Z., Kuziak R., Chorzępa W., Pietrzyk M.: Numerical simulation of manufacturing of the crash box made of DP steel, Steel Research International, spec. issue conf. Metal Forming, 2012, p. 1291-1294.
  • 2. Ambroziński M., Kuziak R.: Identification of the flow stress model for the Strip material subject to bulk deformation, Computer Methods In Materials Science, Vol. 14, 2014, No. 2, p. 99-107.
  • 3. Andersson R, Schedin E, Magnusson C, Ocklund J, The Applicability of Stainless Steel for Crash Absorbing Components, SAE Technical Paper, 2002.
  • 4. An Evaluation of the Bumper Standard – As Modified in 1982, NHTSA Technical Report, 1987.
  • 5. Butler M, Wycech J, Parfitt J, and Tan E.: Using Terocore Brand Structural Foam to Improve Bumper Beam Design, SAE Technical Paper, 2002.
  • 6. Ching-Yuan Huang, Vehicle bumper, US5971451 A, 1998.
  • 7. Han M. S., Min B. S., J. U. Cho J. U. : Fracture properties of aluminum foam crash box, International Journal of Automotive Technology, 2014, Vol. 15, Issue 6, p. 945-951.
  • 8. Hosseinzadeh RM, Shokrieh M, Lessard LB.: Parametric study of automotive composite bumper beams subjected to low-velocity impacts, J. Composite Stuct., 2005, 68, p. 419-427.
  • 9. Jia N., Xiao S.N.: Study on the automotive thin-walled energy absorbing structure crashworthiness, Equipment, Vol. 43, 2005, pp. 6-10.
  • 10. Jing YY, Barton DC.: The response of square cross-section tubes under lateral impact loading, International Journal of Crashworthiness, 1998, 3, p. 359–78.
  • 11. Jiayao M.,ZhongY.: Energy absorption of thin-walled beams with a pre-folded origami pattern, Thin-Walled Structures, 2013, 73, p. 198–206,
  • 12. Jiayao M.,ZhongY., Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation, Journal of Applied Mechanics, 2014, Vol. 81,
  • 13. Kassa M.: Energy Absorption Plates: Thin-walled Square Tubes with Pre-folded Origami Pattern as Core, University of Oxford, 2012, p. 5-7
  • 14. Kecman D.: Bending collapse of rectangular and square section tubes, International Journal of Mechanical Sciences, 1983, 25, p. 623–36.
  • 15. Kornhauser M, Energy absorbing bumper system, US3810668 A, 1974
  • 16. Lademo O. G., Berstad T., Eriksson M., Tryland T., Furuc T., Hopperstad O. S., Langseth M., A model for process-based crash simulation, Norwegian University of Science and Technology Trondheim, Norway, 2008, p. 376–388.
  • 17. Link, T. and Jensen, C.: Three-Point Bending Crash Performance of Advanced High Strength Steels, SAE Technical Paper 2009-01-0797, 2009, doi:10.4271/2009-01-0797.
  • 18. Ma J.: Thin-walled Tubes with Pre-folded Origami Patterns as Energy Absorption Devices, Balliol College Oxford, 2011, p. 113-123.
  • 19. Marzbanrad J.M., Alijanpour M., and Kiasat M.S.,: Designand analysis of automotive bumper beam in low speed frontal crashesh, Thin Walled Struct., 2009, 47, p. 902-911
  • 20. Motgi N.,S., Kulkarni P., R., Bansode S., S., Design improvement in front bumper of a passenger car using impact analysis-a review, International Journal of Instrumentation, Control and Automation (IJICA), Vol. 1, Iss-3,4, 2012.
  • 21. Nagel G. M. and Thambiratnam D. P.: Computer simulation and energy absorption of tapered thin-walled rectangular tubes, Thin-walled structures, Elsevier, Vol. 43, 2005, pp.1225-1242.
  • 22. Qing-fen L., Hai-dou W., Yan-jie L., Sheng-yuan Y.: Finite Element Analysis and Shape Optimization of Automotive Crash-box Subjected to Low Velocity Impact, 2009 International Conference on Measuring Technology and Mechatronics Automation, 2009, p. 791-794
  • 23. Raschke C.: Losing weight is never easy, Automotive Now, Issue 1, 2013, p. 20-22.
  • 24. Rusineka A., Zaerab R., Forquina P., Klepaczkoa J.R.: Effect of plastic deformation and boundary conditions combined with elastic wave propagation on the collapse site of a crash box, Thin-Walled Structures, Vol. 46, 2008, p. 1143–1163.
  • 25. Somnitz James L., Energy absorbing vehicle bumper assembly, US3519301 A, 1968.
  • 26. Sun G, Li G, Hou S, Zhou S, Li W, Li Q.: Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater Sci Eng A 2010, Vol. 527, p. 1911–1919.
  • 27. Świłło S., Kocańda A., Czyżewski P., Kowalczyk P.: Hemming Process Evaluation by Using Computer Aided Measurement System and Numerical Analysis; Steel Research International, (spec. ed. ICTP), Wiley-VCH Verlag, 2011, p. 633-637.
  • 28. Świłło S., Czyżewski P., Lisok J., An experimental study for hydro- bulging process using advance computer technique, Steel Research International, (spec. ed. MetalForming), Wiley-VCH Verlag, 2012, p. 1411-1414.
  • 29. Świłło S., Czyżewski P., Lisok J., Chamera M.: Advanced computer based techniques and methods in process design for large car-body parts, Advanced metal forming processes in automotive industry, Proc. of the 3st International Lower Silesia - Saxony Conference, 13-16 May 2012, Wroclaw, Poland, (ed. Z. Gronostajski), p. 85- 96.
  • 30. Swillo S., Iyer K. and Hu J.: Angled Line Method for Measuring Continuously Distributed Strain in Sheet Bending, ASME Journal of Manufacturing Science and Engineering. Vol. 128, 2006, p. 651-658.
  • 31. Swillo S., Hu J., Iyer K., Yao J., Koç M., Cai W.: Detection and characterization of surface cracking in sheet metal hemming using optical method, Transactions of the North American Manufacturing Research Institute of SME, 2005, Vol. 33, p. 49-55.
  • 32. Uddandapu P., K., Impact Analysis on Car Bumper by varying speeds using Materials ABS Plastic and Poly Ether Imide by Finite Element Analysis software Solid works, International Journal of Modern Engineering Research (IJMER), Vol.3, Issue.1, Jan-Feb. 2013, p. 391- 395.
  • 33. Wierzbicki T, Abramowicz W.: The mechanics of deep plastic collapse of thin- walled structures, In: Wierzbicki T, Jones N, editors. Structural failure. New York: John Wiley&Sons, 1988.
  • 34. Yamazaki K, Han J.: Maximization of the crushing energy absorption of tubes. Struct Optim 1998; Vol. 16, p. 37–46.
  • 35. Zhang X. Y., Jin X. L., Li Y. Y. and Li G. G.: Improvement design of the main Energy-absorbing Automotive parts based on Traffic Accident Analysis, Material & Design, Elsevier, Vol.29, 2005, p. 403-410.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-758c1a70-5c14-42d4-864b-b391e757824a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.