PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive multiscale analyses on structural failure considering localized damage evolution on vulnerable joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deterioration in structures starts from meso-scale defects on vulnerable joints where damage evolution becomes main reason of fatigue accumulation. Therefore analyses on structural failure induced by fatigue accumulation must be carried out in multi-scale. This paper is aimed to provide a multi-scale computational approach for structural failure analyses. Scale coupling method based on numerical integrated constraint equations is developed. This scale coupling method can guarantee sufficient computing precision when material at the trans-scale boundary keep elastic. However in structural deterioration process, material nonlinearities can evolve to the trans-scale boundary, thus make this scale coupling method invalid. A methodological strategy considering adaptive trans-scale boundary is proposed to deal with the extension of local nonlinear response during analyses. With application of the multi-scale modeling and computation strategy developed in this paper, failure processes of a beam component with defect and a longitudinal stiffening truss are analyzed. Results show that, damage evolution has acceleration effect on macroscopic deterioration of structure property, and localization phenomenon of damage evolution is obvious. Comparison of failure route of upper and bottom joints of the truss shows different deterioration process.
Rocznik
Strony
304--316
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • Department of Engineering Mechanics, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
autor
  • Department of Engineering Mechanics, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
autor
  • Department of Engineering Mechanics, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
Bibliografia
  • [1] Z.X. Li, T.Q. Zhou, T.H.T. Chan, Y. Yu, Multi-scale numerical analyses on dynamic response and local damage in long-span bridges, Engineering Structures 29 (7) (2007) 1507–1524.
  • [2] P. Bhattacharjee, K. Ramesh Kumar, T.A. Janardhan Reddy, A comparative study of probabilistic structural safety analyses, in: Proceedings of the 2nd International Conference on Reliability, Safety and Hazard – Risk-Based Technologies and Physics-of-Failure Methods, ICRESH, 2010, pp. 256–262.
  • [3] J.L. Chaboche, Damage Mechanics, vol. 2, Elsevier Ltd., 2003.
  • [4] T. Hettich, A. Hund, E. Ramm, Modeling of failure in composites by X-FEM and level sets within a multiscale framework, Computer Methods in Applied Mechanics and Engineering 197 (5) (2008) 414–424.
  • [5] W.K. Liu, D. Qian, S. Gonella, S.F. Li, W. Chen, S. Chirputkar, Multiscale methods for mechanical science of complex materials: bridging from quantum to stochastic multi esolution continuum, International Journal for Numerical Methods in Engineering 83 (8–9) (2010) 1039–1080.
  • [6] R. Phillips, Multiscale modeling in the mechanics of materials, Current Opinion in Solid State & Materials Science 3 (6) (1998) 526–532.
  • [7] J.G. Michopoulos, C. Farhat, J. Fish, Modeling and simulation of multiphysics systems, Journal of Computing and Information Science in Engineering 5 (3) (2005) 198–213.
  • [8] J. Fish, V. Belsky, Multigrid met hod for periodic heterogeneous media, 1. convergence studie s for one-dimensional case, Computer Methods in Applied Mechanics and Engineering 126 (1–2) (1995) 1–16.
  • [9] J. Fish, K. Shek, Multiscale analyses of large scale nonlinear structures and materials, International Journal for Computational Civil and Structural Engineering 1 (1) (2000) 79–90.
  • [10] Z.X. Li, T.H.T. Chan, Y. Yu, Z.H. Sun, Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration-part I: modeling methodology and strategy, Finite Elements in analyses and Design 45 (11) (2009) 782–794.
  • [11] D.J. Monaghan, I.W. Doherty, D. McCourt, C.G. Armstrong, Coupling 1D beam to 3D bodies, 7th International Meshing Roundtable (1998) 285–293.
  • [12] F. Gruttmann, R. Sauer, W. Wagner, A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections, Computer Methods in Applied Mechanics and Engineering 160 (3-4) (1998) 383–400.
  • [13] J. Pitkäranta, R. Stenberg, Analyses of some mixed finite element methods for plane elasticity equations, Mathematics of Computation 41 (1983) 399–423.
  • [14] J.G. Yue, A. Fafitis, J. Qian, T. Lei, Application of 1D/3D finite elements coupling for structural nonlinear analyses, Journal of Central South University of Technology 18 (3) (2011) 889–897.
  • [15] R.W.McCune,C.G.Armstrong,D.J.Robinson,Mixeddimensional coupling in finite element models, International Journal for Numerical Methods in Engineering 49 (2002) 725–750.
  • [16] K.W. Shim, D.J. Monaghan, C.G. Armstrong, Mixed dimensional coupling in finite element stress analyses, Engineering with Computers 18 (2002) 241–251.
  • [17] P. Nukala, D.W. White, A mixed finite element for three-dimensional nonlinear analyses of steel frames, Computer Methods in Applied Mechanics and Engineering 193 (23–26) (2004) 2507–2545.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-758a9fe4-8a99-4399-9604-98c11f397027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.