PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A strengthened asymptotic uniform distribution property

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We are concerned with estimating the rate of convergence in (0.1), a question recently discussed by Dolgopyat and Hafouta (2022). We obtain a quantitative estimate under weaker moment assumptions, by using a different approach.
Rocznik
Strony
263--285
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • IRMA, UMR 7501, Université Louis-Pasteur et C.N.R.S., Strasbourg, France
Bibliografia
  • [1] B. Davis and D. MacDonald, An elementary proof of the local central limit theorem, J. Theoret. Probab. 8 (1995), 695-701.
  • [2] P. Diaconis and Ch. Stein, Some tauberian theorems related to coin tossing, Ann. Probab. 6 (1978), 483-490.
  • [3] D. Dolgopyat and Y. Hafouta, Edgeworth expansions for independent bounded integer valued random variables, Stoch. Process. Appl. 152 (2022), 486-532.
  • [4] A. Dvoretzky and J. Wolfowitz, Sums of random integers reduced mod m, Duke Math. J. 18 (1951), 501-507.
  • [5] A. S. Fomin, An arithmetical method of proof of a local theorem for series of independent integer random vectors, Mat. Zametki 28 (1980), 791-800 (in Russian).
  • [6] G. A. Freiman, D. A. Moskvin and A. A. Yudin, Structural theory of set addition, and local limit theorems for independent lattice random variables, Teor. Veroyatnost. Primen. 19 (1974), 52-62 (in Russian).
  • [7] N. G. Gamkrelidze, On a local limit theorem for lattice random variables, Theory Probab. Appl. 9 (1964), 662-664.
  • [8] N. G. Gamkrelidze, On a local limit theorem in strong sense, Statist. Probab. Lett. 35 (1997), 79-83.
  • [9] R. Giuliano, Z. S. Szewczak and M. Weber, Almost sure local limit theorem for the Dickman distribution, Period. Math. Hungar. 76 (2018), 155-197.
  • [10] R. Giuliano and M. Weber, Approximate local limit theorems with effective rate and application to random walks in random scenery, Bernoulli 23 (2017), 3268-3310.
  • [11] B. V. Gnedenko, On a local limit theorem in the theory of probability, Uspekhi Mat. Nauk (N.S.) 3 (1948), no. 3, 187-194 (in Russian).
  • [12] H.-K. Hwang and T.-H. Tsai, Quickselect and the Dickman function, Combin. Probab. Computing 11 (2002), 353-371.
  • [13] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.
  • [14] C. McDiarmid, Concentration, in: Probabilistic Methods for Algorithmic Discrete Mathematics, Algorithms Combin. 16, Springer, Berlin, 1998, 195-248.
  • [15] D. McDonald, A local limit theorem for large deviations of sums of independent, nonidentically distributed random variables, Ann. Probab. 7 (1979), 526-531.
  • [16] A. A. Mitalauskas, Local limit theorems for stable limit distributions, Theor. Probab. Appl. 7 (1962), 180-185.
  • 17] A. A. Mitalauskas, On multidimensional local limit theorem for lattice distributions, Tr. Akad. Nauk Litovsk. SSR Ser. B 2 (1960), 3-14.
  • [18] A. B. Mukhin, A relationship between local and integral limit theorems, Theor. Probab. Appl. 40 (1995), 92-103.
  • [19] A. B. Mukhin, Local limit theorems for lattice random variables, Theor. Probab. Appl. 36 (1991), 698-713.
  • [20] A. B. Mukhin, Some necessary and sufficient conditions for the validity of the local limit theorem, Dokl. Akad. Nauk UzSSR 8 (1984), 7-8 (in Russian).
  • [21] V. V. Petrov, Sums of Independent Random Variables, Ergeb. Math. Grenzgeb. 82, Springer, 1975.
  • [22] Y. V. Prokhorov, On a local limit theorem for lattice distributions, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 535-538 (in Russian).
  • [23] A. K. Raudelyunas, On a multidimensional local limit theorem, Litovsk. Mat. Sb. 4 (1964), 141-145 (in Russian).
  • [24] B. A. Rogozin, Some problems in the field of limit theorems, Theor. Probab. Appl. 3 (1958), 174-184.
  • [25] Y. A. Rozanov, On a local limit theorem for lattice distributions, Theor. Probab. Appl. 2 (1957), 260-265.
  • [26] Z. Szewczak and M. Weber, Classical and almost sure local limit theorems, Dissertationes Math. 589 (2023), 97 pp.
  • [27] M. Weber, A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables, Funct. Approx. Comment. Math., to appear.
  • [28] M. Weber, On Mukhin’s necessary and sufficient condition for the validity of the local limit theorem, Forum Math. 36 (2024), 1-4.
  • [29] M. Weber, Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties, Indian J. Pure Appl. Math., to appear.
  • [30] M. Weber, A sharp correlation inequality with an application to almost sure local limit theorem, Probab. Math. Statist. 31 (2011), 79-98.
  • [31] M. Weber, Dynamical Systems and Processes, IRMA Lectures Math. Theoret. Phys. 14, Eur. Math. Soc., 2009.
  • [32] M. Weber, Small divisors of Bernoulli sums, Indag. Math. 18 (2007), 281-293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75860511-ab7a-4d90-8afc-338248e16404
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.