PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An efficient key management and authentication protocol for IoT networks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wydajny protokół zarządzania kluczami i uwierzytelniania dla sieci IoT
Języki publikacji
EN
Abstrakty
EN
The increasing integration of IoT technology into our daily lives through applications, it is critical to assure these systems security and privacy problems. Furthermore, time-critical IoT applications in healthcare necessary access to real-time private information from third parties (users) via wireless communication devices As a consequence; user identity concerns have to be handled in IoT wireless sensor system networks. (WSNs). In this paper, a secure and compact three-factor identification technique for future IoT WSN applications that relies on user biometric feature extraction. The method that was proposed depends on hash and XOR functions, and it includes (i) three-factor authentication; (ii) a shared session key; (iii) mutual authentication; and (iv) key freshness. The simulation tool here using is AVISPA for Rapid Verification of Internet Security Protocols and an informal security research that confirms its other qualities. Furthermore, our calculations show suggested method outperforms existing similar authentication methods with respect to of safety and usefulness, as well as communications and computing costs. Furthermore, the proposed protocol is suitable for usage in the vast majority of IoT and WSN applications
PL
Rosnąca integracja technologii IoT z naszym codziennym życiem za pośrednictwem aplikacji sprawia, że zapewnienie bezpieczeństwa tych systemów i problemów związanych z prywatnością ma kluczowe znaczenie. Ponadto krytyczne czasowo aplikacje IoT w opiece zdrowotnej wymagają dostępu do prywatnych informacji w czasie rzeczywistym od stron trzecich (użytkowników) za pośrednictwem bezprzewodowych urządzeń komunikacyjnych. kwestie związane z tożsamością użytkownika muszą być rozwiązywane w sieciach bezprzewodowych systemów czujników IoT. (WSN). W tym artykule omówiono bezpieczną i kompaktową technikę trójczynnikowej identyfikacji dla przyszłych aplikacji IoT WSN, która opiera się na ekstrakcji cech biometrycznych użytkownika. Zaproponowana metoda opiera się na funkcjach haszujących i XOR oraz obejmuje (i) uwierzytelnianie trójskładnikowe; (ii) wspólny klucz sesyjny; (iii) wzajemne uwierzytelnianie; oraz (iv) kluczowa świeżość. Narzędziem symulacyjnym, którego tutaj używamy, jest AVISPA do szybkiej weryfikacji protokołów bezpieczeństwa internetowego oraz nieformalne badanie bezpieczeństwa, które potwierdza jego inne cechy. Co więcej, nasze obliczenia pokazują, że sugerowana metoda przewyższa istniejące podobne metody uwierzytelniania pod względem bezpieczeństwa i użyteczności, a także kosztów komunikacji i obliczeń. Ponadto proponowany protokół nadaje się do wykorzystania w zdecydowanej większości aplikacji IoT i WSN.
Rocznik
Strony
153--159
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Koneru Lakshmaiah Education Foundation
  • Koneru Lakshmaiah Education Foundation
Bibliografia
  • [1] S. Banerjee, V. Odelu, A. K. Das et al., “A provably secure and lightweight anonymous user authenticated session key exchange scheme for Internet of Things deployment,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8739–8752, 2019.
  • [2] A. Alkhayyat and M. S. Mahmoud, “Novel cooperative mac aware network coding under log-normal shadowing channel model in wireless body area network,” International Journal on Communications Antenna and Propagation (IRECAP), vol. 9, no. 3, pp. 198–206, 2019.
  • [3] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras,“Applications of wireless sensor networks: an up-to-date survey,” Applied System Innovation, vol. 3, no. 1, 2020.
  • [4] L. A. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, “IoT privacy and security: challenges and solutions,” Applied Sciences, vol. 10, no. 12, 2020.
  • [5] Z. Yang, J. Lai, Y. Sun, and J. Zhou, “A novel authenticated key agreement protocol with dynamic credential for wsns,” ACM Transactions on Sensor Networks, vol. 15, no. 2, pp. 1–27, 2019.
  • [6] C. T. Chen, C. C. Lee, and I. C. Lin, “Efficient and secure threeparty mutual authentication key agreement protocol for WSNs in IoT environments,” PLOS ONE, vol. 15, no. 4, article e0232277, 2020.
  • [7] M. Teymourzadeh, R. Vahed, S. Alibeygi, and N. Dastanpour, “Security in wireless sensor networks: issues and challenges,” 2020, https://arxiv.org/abs/2007.05111.
  • [8] D. Fang, Y. Qian, and R. Q. Hu, “A flexible and efficient authentication and secure data transmission scheme for IoT applications,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3474–3484, 2020.
  • [9] A. K. Das, S. Zeadally, and D. He, “Taxonomy and analysis of security protocols for internet of things,” Future Generation Computer Systems, vol. 89, pp. 110–125, 2018.
  • [10] H. Lee, D. Kang, J. Ryu, D. Won, H. Kim, and Y. Lee, “A three factor anonymous user authentication scheme for internet of things environments,” Journal of Information Security and Applications, vol. 52, article 102494, 2020.
  • [11] M. Kompara, S. H. Islam, and M. Hölbl, “A robust and efficient mutual authentication and key agreement scheme with untraceability for WBANs,” Computer Networks, vol. 148, pp. 196– 213, 2019.
  • [12] D. Minoli, S. Kazem, and B. Occhiogrosso, “IoT considerations, requirements, and architectures for smart buildings—energy optimization and next-generation building management systems,” IEEE Internet of Things Journal, vol. 4, no. 1, pp. 269–283, 2017.
  • [13] W. Shi and P. Gong, “A new user authentication protocol for wireless sensor networks using elliptic curves cryptography,” International Journal of Distributed Sensor Networks, vol. 9, Article ID 730831, 2013.
  • [14] P. Kumar, S. Lee, and H. Lee, “E-SAP: efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks,” Sensors, vol. 12, pp. 1625– 1647, 2012.
  • [15] L. Wang, “Analysis and enhancement of a password authentication and update scheme based on elliptic curve cryptography,” Journal of Applied Mathematics, vol. 2014, Article ID 247836, 11 pages, 2014.
  • [16] R. Amin, S. H. Islam, G. P. Biswas, M. K. Khan, L. Leng, and N. Kumar, “Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks,” Computer Networks, vol. 101, pp. 42–62, 2016.
  • [17] J. Li, Y. Ding, Z. Xiong, and S. Liu, “An improved two-factor mutual authentication scheme with key agreement in wireless sensor networks,” KSII Transactions on Internet and Information Systems, vol. 11, no. 11, 2017. Journal of Sensors 17
  • [18] J. He, Z. Yang, J. Zhang, W. Liu, and C. Liu, “On the security of a provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks,” vol. 14, no. 1, 2018.
  • [19] G. Xu, S. Qiu, H. Ahmad et al., “A multi-server two-factor authentication scheme with un-traceability using elliptic curve cryptography,” Sensors, vol. 18, no. 7, article 2394, 2018.
  • [20] J. Ryu, H. Lee, H. Kim, and D. Won, “Secure and efficient three-factor protocol for wireless sensor networks,” Sensors, vol. 18, no. 12, article 4481, 2018.
  • [21] Y. Chen, Y. Ge, W. Wang, and F. Yang, “A biometric-based user authentication and key agreement scheme for heterogeneous wireless sensor networks,” KSII Transactions on Internet and Information Systems, vol. 12, no. 4, 2018.
  • [22] A. A. Yassin, H. Jin, A. Ibrahim, and D. Zou, “Anonymous password authentication scheme by using digital signature and fingerprint in cloud computing,” in 2012 Second International Conference on Cloud and Green Computing, pp. 282– 289, Xiangtan, China, 2012.
  • [23] P. K. Dhillon and S. Kalra, “Multi-factor user authentication scheme for IoT-based healthcare services,” Journal of Reliable Intelligent Environments, vol. 4, no. 3, pp. 141–160, 2018.
  • [24] X. Niu and Y. Jiao, “An overview of perceptual hashing,” Acta Electronica Sinica, vol. 36, no. 7, pp. 1405–1411, 2008.
  • [25] Z. Jie, “A novel block-DCT and PCA based image perceptual hashing algorithm,” 2013, https://arxiv.org/abs/1306.4079.
  • [26] L. Kotoulas and I. Andreadis, “Colour histogram contentbased image retrieval and hardware implementation,”IEE Proceedings - Circuits, Devices and Systems, vol. 150, no. 5, pp. 387–393, 2003.
  • [27] M. Wazid, A. K. Das, S. Shetty, J. P. C. Rodrigues, and Y. Park, “LDAKM-EIoT: Lightweight device authentication and key management mechanism for edge-based IoT deployment,” Sensors, vol. 19, no. 24, p. 5539, 2019.
  • [28] D. Dolev and A. C. Yao, “On the security of public key protocols,” IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–208.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7584630e-8678-4f13-ac8d-4e4555f26246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.