PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature Field in Surfaced Steel Casts with the Heat of the Weld Taken into Account

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work a model of temperature field in a steel cast during surfacing was presented. Analytical solution for half-infinite body model was obtained by aggregating temperature increments caused by applying liquid metal and heat radiation of moving electrode. The assumptions were Gaussian distribution heat sources of applied metal and weld and of electric arc heat source. Computations of temperature field were carried out during surfacing of cuboidal steel cast. The results were presented as temporary and maximum temperature distribution in element’s cross section and thermal cycles at selected points. The accuracy of solution was verified comparing calculated fusion line to that obtained experimentally.
Rocznik
Strony
121--126
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
  • The Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Czestochowa, Poland
Bibliografia
  • [1] Adamiec J., Markusik M., Skrzypczak A. (2006). The repair of magnesium alloy castings with the help of welding techniques. Archiv. Foundry 6(18)(1/2) 215-220 (in Polish).
  • [2] Szajnar J., Wróbel P., Wróbel T. (2006). TIG - surfacing - method of repair chromium cast with castings defects. Archiv. Foundry 6(22) 490-496 (in Polish).
  • [3] Szajnar J., Stawarz M., Wróbel P., Wróbel T. (2007). Properties shaping and rep air of selected types of cast iron. Archiv. Foundry Eng. 7(2) 87-90.
  • [4] Szajnar J., Wróbel P., Wróbel T. (2008). Application of welding technology TIG to cast iron repair. Archiv. Foundry 8(1) 317-320.
  • [5] Wojciechowski W., Kowalski J.S. (2013). Welding technology in foundry. Archiv. Foundry 13(1) 87-90 (in Polish).
  • [6] Opiekun Z.A., Trytek A. (2006). Effect of plasma gas on heat absorber by surface remelting Mar-M509 cobalt casting alloy. Archiv. Foundry 6(18 – 1/2) 401-406 (in Polish).
  • [7] Opiekun Z.A., Trytek A. Hardness and microstructure surface molten of Mar-M509 cobalt casting alloy. Archiv. Foundry 6(18 – 1/2) 401-406 (in Polish).
  • [8] Orłowicz W., Trytek A. (2006). Surface melting of cast iron alloy with chromium. Archiv. Foundry 6(18 – 2/2) 313-318 (in Polish).
  • [9] Orłowicz A., Trytek A. (2007). Development of microstructure and performance of cast iron surface enriched plasma arc. Mongraph. Archiv. Foundry 7(23) (in Polish).
  • [10] Orłowicz W., Trytek A. (2006). The thermal efficiency and melting efficiency of the audion process on cast iron with Cr. Archiv. Foundry 6(18 – 2/2) 319-324 (in Polish).
  • [11] Orłowicz W., Betleja J., Mróz M., Trytek A., Tupaj M., The flow calorimeter for heat measuring in the bonding process. Copyright invention (patent) No PL211283 granted by the Polish Patent Office.
  • [12] Mahapatra M.M., Datta G.L., Pradhan B (2006). Three-dimensional finite element analysis to predict the effects of shielded metal arc welding process parameters on temperature distributions and weldment zones in butt and one-sided fillet welds. Proc. I. Mech. 220, J. Eng. Manuf. 837-884.
  • [13] Kumar A., DebRoy T. (2007). Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions. Metall. Mater. Trans. 38A, 506-519.
  • [14] Wang S., Goldak J., Zhou J., Tchernov S., Downey D. (2009). Simulation on the thermal cycle of a welding process by space-time convection-diffusion finite element analysis. Int. J. Thermal Sci. 48, 936-947.
  • [15] Deng D. (2009). FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater. Dsgn. 30, 359-366.
  • [16] Jiang W., Liu Z., Gong J.M., Tu S.T. (2010). Numerical simulation to study the effect of repair width on residual stresses of stainless steel clad plate. Int. J. Pres. Ves. Pip. 87, 457 – 463.
  • [17] Lee H.T., Chen C.T., Wu J.L. (2010). 3D numerical study of effects of temperature field on sensitisation of Alloy 690 butt welds fabricated by gas tungsten arc welding and laser beam welding. Sci. Technol.Weld. Join. 15, 605-612.
  • [18] Piekarska W., Kubiak M., Bokota A. (2011). Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joint. Arch. Metall. Materials 56(2), 409-421.
  • [19] Piekarska W., Kubiak M. (2011). Three-dimensional model for numerical analysis of thermal phenomena in laser-arc hybrid welding process, Int. J. Heat Mass Transfer 54, 4966-4974.
  • [20] Chen J., Schwenk C., Wu C.S., Rethmeier M. (2012). Predicting the influence angle on heat transfer and fluid flow for new gas metal arc processes. Int. J. Heat Mass Transfer 55, 102-111.
  • [21] Rosenthal D. (1941). Mathematical theory of heat distribution during welding and cutting. Weld. J. 20, 220s – 234s.
  • [22] Rosenthal D. (1946). The theory of moving sources of heat and applications to metal treatments. Trans. ASME, 11, 849 – 866.
  • [23] Rykalin N.N. (1947). Thermal fundamentals of welding. AN SSSR, Moskva (in Russian).
  • [24] Rykalin N.N. (1951) Calculations of heat processes in welding. Mašgiz, Moskva (in Russian).
  • [25] Christensen N., Davies V.L., Gjermundsen K. (1965). Distribution of temperatures in arc welding. British Weld. J. 2, 54-75.
  • [26] Eagar T.W., Tsai N.S. (1983). Temperature fields produced by travelling distributed heat sources. Welding J. 62, 346s-355s.
  • [27] Goldak J., Chakravarti A., Bibby M. (1985). A double ellipsoidal finite element model for welding heat source. II W Doc. No. 212-603-85.
  • [28] Bo K.S., Cho H.S. (1990). Transient temperature distribution in arc welding of finite thickness plates. Proc. Inst. Mech. Eng. B3(204), 175-183.
  • [29] Jeong S.K., Cho H.S. (1997). An analytical solution to predict the transient temperature distribution in fillet arc welds. Welding J. 76, 223s – 232s.
  • [30] Nguyen N.T., Matsuoka K., Suzuki N., Maeda Y. (1999). Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources. Welding J. 78, 265s-274s.
  • [31] Fassani R.N.S. (2003). Analytical modeling of multipass welding process with distributed heat source. J. Braz. Soc. Mech. Sci. Eng. 25(3), 302-305.
  • [32] Nguyen N.T., Mai Y.W., Simpson S., Ohta A. (2004). Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Welding J. 83, 82s-93s.
  • [33] Kang S.H., Cho H.S. (1999). Analytical solution for transient temperature distribution in gas tungsten arc welding with consideration of filler wire. Proc. Inst. Mech. Engrs. 213B, 799-811.
  • [34] Myśliwiec M. (1970). Thermo-mechanical fundamentals of welding. WN-T, Warszawa 1970 (in Polish).
  • [35] Radaj D. (1992). Heat effects of welding. Temperature field, residual stress, distortion. Springer-Verlag, Berlin Heidelberg, New York, London, Paris, Tokyo.
  • [36] Easterling K.E. (1993). Modelling the weld thermal cycle and transformation behaviour in the hest affected zone. In: H.K.E. Cerjak, K.E. Easterling (Eds), Mathematical modelling of weld phenomena, The Institute of Materials, London.
  • [37] Winczek J. (2008). Modelling of HAZ in rectangular prismatic steel casts regenerated by weave bead up. Arch. Foundry Eng. 8 (Special Issue 1), 331-336.
  • [38] Winczek J. (2010). Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source, Int. J. Heat Mass Transfer 53, 5774-5781.
  • [39] Vishnu P.R., Li W.B., Easterling K.E. (1991). Heat-flow model for pulsed welding. Mater. Sci. Technol. 7, 649-659.
  • [40] Modenesi P.J., Reis R.I. (2007). A model for melting rate phenomena in GMA welding. J. Mater. Proc. Technol. 189, 199–205.
  • [41] Hrabe P., Choteborsky R., Navratilova M. (2009). Influence of welding parameters on geometry of weld deposit bead, In Int. Conf. Economic Eng. Manufacturing Systems, Brasov, 26 – 27 November 2009, Regent 10 3(27) 291-294.
  • [42] Klimpel A., Balcer M., Klimpel A.S., Rzeźnikiewicz A. (2006). The effect of the metod and parameters in the GMA surfacing with solid wires on the quality of pudding welds and the content of the base material in the overlay. Welding Int. 20(11), 845-850.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75825403-042e-41a4-89e2-ac319035c07d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.