Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The integration of satellite data in rainfall-runoff simulation is of paramount importance in regions where data are limited and not easily available. The data used in this study, concerning the daily precipitation and daily runoff during the period extending from 2007 to 2015, were measured and recorded in situ. This study aims primarily to optimize the performance of the modeling carried out, using data from various satellite sources in order to complete the missing data, and consequently to predict the liquid flow in the Beni Bahdel watershed, in the northwestern region of Algeria, by applying the long short-term memory (LSTM) learning model. It is important to know that the optimization of rainfall-runoff modeling is based on the use of satellite data relating to evapotranspiration, mean temperatures, minimum and maximum temperatures, net radiation, wind speed, and relative humidity. These data come from the NOAA CPC, ERA, ERA5_AG, ERA5-Land, GLDAS, CFSR and MERRA2 satellites. In addition, two statistical indicators were calculated to perform this optimization that is based on the LSTM approach that integrates remote sensing data, the coefficient of determination (R2), and the Nash-Sutcliffe efficiency (NSE). Thus, a performance difference of about 0.30 was observed, for the NSE and R2 coefficients, between the CFSR temperature data (NSE of 0.61and R2 of 0.61) and the maximum and minimum temperature data from the ERA5-LAND and ERA5 satellite sources (0.92 for NSE and 0.93 for R²), for the validation period. This significant difference suggests that the use of the minimum and maximum temperature data from the ERA5-LAND source allows achieving a rainfall-runoff modeling wih optimal performance. Indeed, the findings showed that quite high performances were achieved for the calibration period (0.93 for NSE and 0.95 for R2) and for the validation period (0.92 for NSE and 0.93 for R2).
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
407--419
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
- Civil and Environmental Engineering Laboratory, University of Djillali Liabes, BP 89. DZ-22000, Sidi Bel Abbés, Algeria
autor
- Civil and Environmental Engineering Laboratory, University of Djillali Liabes, BP 89. DZ-22000, Sidi Bel Abbés, Algeria
autor
- Civil and Environmental Engineering Laboratory, University of Djillali Liabes, BP 89. DZ-22000, Sidi Bel Abbés, Algeria
Bibliografia
- 1. Abdelmoneim, H., Soliman, M.R., Moghazy, H.M. 2020. Evaluation of TRMM 3B42V7 and CHIRPS Satellite Precipitation Products as an Input for Hydrological Model over Eastern Nile Basin. Earth Systems and Environment 4(4), 685–698. https://doi.org/10.1007/s41748-020-00185-3
- 2. Aimé, S., Remaoun, K. 1988. Climatic variability and steppisation in the Tafna basin (western Oranie) (in french). Méditerranée 63(1), 43–51. https://doi.org/10.3406/medit.1988.2528
- 3. Arsenault, R., Brissette, F., Martel, J.L., Troin, M., Lévesque, G., Davidson-Chaput, J., Gonzalez, M.C., Ameli, A., Poulin, A. 2020. A comprehensive, multisource database for hydrometeorological modeling of 14,425 North American watersheds. Scientific Data 7(1), 1–12. https://doi.org/10.1038/ s41597-020-00583-2
- 4. Bemmoussat, A., Korichi, K., Baahmed, D., Maref, N., Djoukbala, O., Kalantari, Z., Bateni, S.M. 2021. Contribution of Satellite-Based Precipitation in Hydrological Rainfall–Runoff Modeling: Case Study of the Hammam Boughrara Region in Algeria. Earth Systems and Environment 5(4), 873–881. https://doi.org/10.1007/s41748-021-00256-z
- 5. Born, K., Bachner, S. 2003. Cyclogenesis and severe weather in the vicinity of the Atlas Mountains: studies using a nonhydrostatic mesoscale atmospheric model, in: EGS-AGU-EUG Joint Assembly. p. 11689. https://ui.adsabs.harvard.edu/ abs/2003EAEJA....11689B/abstract
- 6. Bouguerra, S.A., Mansour, B. 2023. Rainfall-flow modeling using a global conceptual model: Case of the beni bahdel watershed (northwest of algeria). Journal of Water Management Modeling. https://doi.org/10.14796/JWMM.C500
- 7. Boulmaiz, T., Guermoui, M., Boutaghane, H. 2020. Impact of training data size on the LSTM performances for rainfall–runoff modeling. Modeling Earth Systems and Environment 6(4), 2153–2164. https://doi.org/10.1007/s40808-020-00830-w
- 8. Chaudhari, K.N., Sarkar, C., Patel, N.K., Parihar, J.S. 2006. an Inter-Comparison of Satellite Based Noaa Cpc Rainfall Estimates and Gauge Observations Over Selected Stations in India. Proc of ISPRS symposium on Geospatial databases for Sustainable Development 27–30. https://www.isprs.org/ proceedings/xxxvi/part4/RS-A-3.pdf
- 9. Cho, K., Kim, Y. 2022. Improving streamflow prediction in the WRF-Hydro model with LSTM networks. Journal of Hydrology 605, 127297. https://doi.org/10.1016/j.jhydrol.2021.127297
- 10. Ciampalini, A., Garfagnoli, F., Del Ventisette, C., Moretti, S. 2013. Potential Use of Remote Sensing Techniques for Exploration of Iron Deposits in Western Sahara and Southwest of Algeria. Natural Resources Research 22(3), 179–190. https://doi.org/10.1007/s11053-013-9209-5
- 11. Darand, M., Amanollahi, J., Zandkarimi, S. 2017. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA) estimation over Iran. Atmospheric Research 190, 121–127. https://doi.org/10.1016/j.atmosres.2017.02.011
- 12. Dehni, A., Lounis, M. 2012. Remote sensing techniques for salt affected soil mapping: Application to the Oran region of Algeria. Procedia Engineering 33, 188–198.https://doi.org/10.1016/j. proeng.2012.01.1193
- 13. Derdour, A., Benkaddour, Y., Bendahou, B. 2022. Application of remote sensing and GIS to assess groundwater potential in the transboundary watershed of the Chott-El-Gharbi (Algerian–Moroccan border). Applied Water Science 12(6), 136. https://doi.org/10.1007/s13201-022-01663-x
- 14. Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L., Mekonnen, D.F. 2019. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. Journal of Hydrology 569, 612–626. https://doi.org/10.1016/j.jhydrol.2018.12.026
- 15. El, N., Kerroumi, I. 2022. Study of the interannual variability of temperature and precipitation in the high plateaus (in french) 6, 65–77. https:// onm-blog.meteo.dz/wp-content/uploads/2024/08/ Article_Kerroumi_2.pdf
- 16. Essou, G.R.C., Sabarly, F., Lucas-Picher, P., Brissette, F., Poulin, A. 2016. Can precipitation and temperature from meteorological reanalyses be used for hydrological modeling? Journal of Hydrometeorology 17(7), 1929–1950. https://doi.org/10.1175/ JHM-D-15-0138.1
- 17. Gebremicael, T.G., Mohamed, Y.A., Zaag, P. van der, Gebremedhin, A., Gebremeskel, G., Yazew, E., Kifle, M. 2019. Evaluation of multiple satellite rainfall products over the rugged topography of the Tekeze-Atbara basin in Ethiopia. International Journal of Remote Sensing 40(11), 4326–4345. https://doi.org/10.1080/01431161.2018.1562585
- 18. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J. 2016. LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems 28(10), 2222–2232. https://doi.org/10.48550/arXiv.1503.04069
- 19. Hashemi, R., Brigode, P., Garambois, P.A., Javelle, P. 2022. How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models? Hydrology and Earth System Sciences 26(22), 5793–5816. https://doi.org/10.5194/hess-26-5793-2022
- 20. Hochreiter, S., Schmidhuber, J. 1997. Long Short-Term Memory. Pakistan Journal of Zoology 9(8), 1735–1780. https://doi.org/10.1162neco.1997.9.8.1735
- 21. Huang, X., Lu, K., Wang, S., Lu, J., Li, X., Zhang, R. 2024. Understanding remote sensing imagery like reading a text document: What can remote sensing image captioning offer? International Journal of Applied Earth Observation and Geoinformation 131, 103939. https://doi.org/10.1016/j.jag.2024.103939
- 22. Inan, C.A., Maoui, A., Lucas, Y., Duplay, J. 2024. Multi-Station Hydrological Modelling to Assess Groundwater Recharge of a Vast Semi-Arid Basin Considering the Problem of Lack of Data: A Case Study in Seybouse Basin, Algeria. Water (Switzerland) 16(1), 160. https://doi.org/10.3390/w16010160
- 23. Irvem, A., Ozbuldu, M. 2018. Accuracy of satellite-based solar data to estimate solar energy potential for Hatay province, Turkey. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7(2), 361–369. https://doi.org/10.17798/bitlisfen.428757
- 24. Kassem, Y., Camur, H., Preala, T.A. 2024. Assessment of Wind Energy Potential for achieving Sustainable Development Goal 7 in the Rural Region of Jeje, Nigeria. Engineering, Technology & Applied Science Research 14(4), 14977–14987. https://doi.org/10.48084/etasr.7311
- 25. Khaled, W., Authority, E.M., Afandi, G.S. El. 2014. Evaluation of Ncep / Cfsr Solar Data Against Ground Observation Over MENA. Open Journal of Atmospheric and Climate Change 1, 1–12. https://doi.org/10.15764/ACC.2014.02001
- 26. Khanal, S., Kushal, K.C., Fulton, J.P., Shearer, S., Ozkan, E. 2020. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing 12(22), 1–29. https://doi.org/10.3390/rs12223783
- 27. Khatibi, A., Krauter, S. 2021. Validation and performance of satellite meteorological dataset merra-2 for solar and wind applications. Energies 14(4), 882. https://doi.org/10.3390/en14040882
- 28. Lazri, M., Labadi, K., Brucker, J.M., Ameur, S. 2020. Improving satellite rainfall estimation from MSG data in Northern Algeria by using a multi-classifier model based on machine learning. Journal of Hydrology 584, 124705. https://doi.org/10.1016/j.jhydrol.2020.124705
- 29. Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., Dadson, S.J. 2021. Benchmarking data-driven rainfall-runoff models in Great Britain: A comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences 25(10), 5517–5534. https://doi.org/10.5194/hess-25-5517-2021
- 30. Levesque, G. 2022. Evaluation of the use of ERA5 and ERA5-Land reanalysis data for evapotranspiration modelling (in french). Doctoral dissertation, École de technologie supérieure. https://espace.etsmtl.ca/id/eprint/3085
- 31. Ma, L., Zhang, T., Li, Q., Frauenfeld, O.W., Qin, D. 2008. Evaluation of ERA-40, NCEP-1, and NCEP- 2 reanalysis air temperatures with ground-based measurements in China. Journal of Geophysical Research Atmospheres 113, D15115. https://doi.org/10.1029/2007JD009549
- 32. Mao, G., Wang, M., Liu, J., Wang, Z., Wang, K., Meng, Y., Zhong, R., Wang, H., Li, Y. 2021. Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation. Physics and Chemistry of the Earth 123, 103026. https://doi.org/10.1016/j.pce.2021.103026
- 33. McClean, F., Dawson, R., Kilsby, C. 2023. Intercomparison of global reanalysis precipitation for flood risk modelling. Hydrology and Earth System Sciences 27(2), 331–347. https://doi.org/10.5194/hess-27-331-2023
- 34. Meddi, H. 2015. Variability of annual rainfall in north-western Algeria (in french). Science et changements planétaires/Sécheresse 20(1), 57–65. https://doi.org/10.1684/sec.2009.0169
- 35. Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D.G., Piles, M., Rodríguez- Fernández, N.J., Zsoter, E., Buontempo, C., Thépaut, J.N. 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
- 36. Nash, J.E., Sutcliffe, J. V. 1970. River Flow Forecasting Through Conceptual Models - Part I - A Discussion of Principles. Journal of Hydrology 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
- 37. Netzband, M., Stefanov, W.L., Redman, C. 2007. Applied remote sensing for urban planning, governance and sustainability. Springer Science & Business Media.https://doi.org/10.1007/978-3-540-68009-3
- 38. Núñez, P.Á., Silva, B., Schulz, M., Rollenbeck, R., Bendix, J. 2021. Evapotranspiration estimates for two tropical mountain forest using high spatial resolution satellite data. International Journal of Remote Sensing 42(8), 2940–2962. https://doi.org/10.1080/01431161.2020.1864058
- 39. Okirya, M., Du Plessis, J. 2024. Trend and Variability Analysis of Annual Maximum Rainfall Using Observed and Remotely Sensed Data in the Tropical Climate Zones of Uganda. Sustainability 16, 6081. https://doi.org/10.3390/su16146081
- 40. Olioso, A., Jacob, F., Olioso, A., Jacob, F., De, E., Olioso, A. 2002. Estimation of evapotranspiration from remote sensing measurements (in french). la houille blanche 88(1), 62–67. https://doi.org/10.1051/lhb/2002008
- 41. Ravindra, B. 2018. Forecasting solar radiation during dust storms using deep learning. arXiv preprint arXiv:1808.10854. https://doi.org/10.48550/arXiv.1808.10854
- 42. Renaud, O., Victoria-Feser, M.P. 2010. A robust coefficient of determination for regression. Journal of Statistical Planning and Inference 140(7), 1852– 1862. https://doi.org/10.1016/j.jspi.2010.01.008
- 43. Ritter, A., Muñoz-Carpena, R .2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology 480, 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004
- 44. Sabzipour, B., Arsenault, R., Troin, M., Martel, J.L., Brissette, F., Brunet, F., Mai, J. 2023. Comparing a long short-term memory (LSTM) neural network with a physically-based hydrological model for streamflow forecasting over a Canadian catchment. Journal of Hydrology 627. https://doi.org/10.1016/j.jhydrol.2023.130380
- 45. Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, Jiande, Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, Jun, Hou, Y.T., Chuang, H.Y., Juang, H.M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., Goldberg, M. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society 91(8), 1015–1057. https://doi.org/10.1175/2010BAMS3001.1
- 46. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., Hauck, L.M. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association 37(5), 1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
- 47. Shekar, P.R., Mathew, A., Yeswanth, P. V., Deivalakshmi, S. 2024. A combined deep CNN-RNN network for rainfall-runoff modelling in Bardha Watershed, India. Artificial Intelligence in Geosciences 5, 100073. https://doi.org/10.1016/j.aiig.2024.100073
- 48. Ur Rahman, K., Shang, S., Shahid, M., Wen, Y. 2020. Hydrological evaluation of merged satellite precipitation datasets for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan. Journal of Hydrology 587, 125040. https://doi.org/10.1016/j.jhydrol.2020.125040
- 49. Van Liew, M.W., Arnold, J.G., Garbrecht, J.D. 2003. Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the ASAE 46(6), 1539–1551. https://doi.org/https://doi.org/10.13031/2013.15643
- 50. Vasiliou, A., Economides, A.A. 2006. MANETs for environmental monitoring. 2006 International Telecommunications Symposium, IEEE 813–818. https://doi.org/10.1109/ITS.2006.4433383
- 51. Wang, H., Zhang, J., Yang, J. 2024. Time series forecasting of pedestrian-level urban air temperature by LSTM: Guidance for practitioners. Urban Climate 56, 102063. https://doi.org/10.1016/j.uclim.2024.102063
- 52. Wang, K., Xu, Q., Li, T. 2020. Does recent climate warming drive spatiotemporal shifts in functioning of high-elevation hydrological systems? Science of the Total Environment 719, 137507. https://doi.org/10.1016/j.scitotenv.2020.137507
- 53. White, J.W., Hoogenboom, G., Stackhouse Jr, P.W., Hoell, J.M. 2008. Evaluation of NASA satellite-and assimilation model-derived long-term daily temperature data over the continental US. agricultural and forest meteorology 148(10), 1574–1584. https://doi.org/10.1016/j.agrformet.2008.05.017
- 54. Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., Deng, S.-H. 2019. Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology 17(1), 26–40. https://doi.org/10.11989/JEST.1674-862X.80904120
- 55. Yakubailik, O.E., Yakubalik, T. V. 2020. Analysis of accumulated precipitation based on satellite data in Central Siberia. IOP Conference Series: Earth and Environmental Science 548, 032025. https://doi.org/10.1088/1755-1315/548/3/032025
- 56. Yilmaz, M. 2023. Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of the Total Environment 856, 159182. https://doi.org/10.1016/j.scitotenv.2022.159182
- 57. Yu, C., Hu, D., Shao, H., Dai, X., Liu, G., Wu, S. 2024. Runoff simulation driven by multi-source satellite data based on hydrological mechanism algorithm and deep learning network. Journal of Hydrology: Regional Studies 52, 101720. https://doi.org/10.1016/j.ejrh.2024.101720
- 58. Zhang, Y.-R., Shang, G.-F., Leng, P., Ma, C., Ma, J., Zhang, X., Li, Z.-L. 2023. Estimation of quasi-full spatial coverage soil moisture with fine resolution in China from the combined use of ERA5-Land reanalysis and TRIMS land surface temperature product. Agricultural Water Management 275, 107990. https://doi.org/10.1016/j.agwat.2022.107990
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75811d97-5dd7-49b0-bb12-df77f37ea929
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.