PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary Investigations of Structure and Properties of TIG Welded Ti-6Al-4V Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The titanium (Ti) and its alloys are taken into interest for commercial purpose due to its low density, high yield strength and high corrosion resistance properties. The present work deals with microstructural observation and mechanical property analysis of tungsten inert gas (TIG) welded Ti-6Al-4V alloy joints. For the purpose, two different set of plates were welded at same current and voltage, i.e., 190 A and 24 V, by the TIG welding technique. A critical analysis of the microstructure and mechanical properties like tensile strength and hardness of the welded Ti-6Al-4V plates was carried out in this work. It was found that both plates showed different behavior during the tension test. Plate 1 had 464.54 MPa of tensile stress and it broke at the welded joint. Plate 2 was unaffected at the welded zone but was broken at the base metal zone. The second plate had tensile strength of 501.83 MPa. According to the hardness test, both the welded plates possessed the highest hardness at the welded zone. However, plate 2 showed approximately 10% higher hardness than that of plate 2. A proper inter-relationship was observed between the mechanical behavior and microstructural appearance. The microscopic view of the welded joints revealed the presence of α, β and martensitic-α phases.
Twórcy
  • Department of Mechanical Engineering, School of Automobile, Mechanical and Mechatronics Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
  • Department of Mechanical Engineering, School of Automobile, Mechanical and Mechatronics Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
  • Department of Mechanical Engineering, Indian Institute of Technology, Dhanbad, India
autor
  • Department of Mechanical Engineering, Indian Institute of Technology, Dhanbad, India
  • Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikolajczyka 5, 45-271 Opole, Poland
Bibliografia
  • 1. Balasubramanian T.S., Balakrishnan M., Balasubramanian V., Manickam M.M. Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints. Transactions of Nonferrous Metals Society of China. 2011; 21(6): 1253–1262.
  • 2. Gope D.K., Kumar U., Chattopadhyaya S., Mandal S. Experimental investigation of pug cutter embedded TIG welding of Ti-6Al-4V titanium alloy. Journal of Mechanical Science and Technology. 2018; 32(6): 2715–2721.
  • 3. Lütjering G., Williams J.C., Gysler A. Microstructure and mechanical properties of titanium alloys. In Microstructure And Properties Of Materials. 2000; 2: 1–77.
  • 4. Gope D.K., Kumar U., Chattopadhyaya S. Mandal S., Investigation into the TIG welded joint of titanium G-5 alloy sheet. IOP Conference Series: Materials Science and Engineering, Sikkim, India 2018; 377.
  • 5. Józwik J., Ostrowski D., Milczarczyk R., Krolczyk G. Analysis of relation between the 3D printer laser beam power and the surface morphology properties in Ti-6Al-4V titanium alloy parts. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018; 40(215).
  • 6. Kumar U., Gope D. K., Kumar R., Chattopadhyaya S., Das A.K., Pramanik A., Krolczyk G. Investigation of microstructure and mechanical properties of titanium alloy sheet using low power Nd-YAG laser welding process, Metallic Materials/Kovové Materiály. 2018;56(2):121–129.
  • 7. Krolczyk G., Sedmak A., Kumar U., Chattopadhyaya S., Das A.K., Pramanik A. A study of heat-affected zone and mechanical properties of Nd-YAG laser welding process of thin titanium alloy sheet. Natural Resources & Engineering. 2016; 1(2): 51–58.
  • 8. Oh J., Kim N.J., Lee S., Lee E.W. Correlation of fatigue properties and microstructure in investment cast Ti-6Al-4V welds. Materials Science and Engineering: A. 2003; 340(1–2): 232–242.
  • 9. Yunlian Q., Ju D., Quan H., Liying Z. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Materials Science and Engineering: A. 2000; 280(1): 177–181.
  • 10. Short A.B., Gas Tungsten Arc welding of α + β titanium alloys: A review. Materials Science and Technology. 2009;25:309–324.
  • 11. Lienert T., Siewert T, Babu S., Acoff V. ASM Handbook, Volume 6A: Welding Fundamentals and Processes. ASM International; 1993.
  • 12. Arivazhagan B., Vasudevan M. A study of microstructure and mechanical properties of grade 91 steel A-TIG weld joint. Journal of Materials Engineering and Performance. 2013; 22(12): 3708–3716.
  • 13. Babu N.K., Raman S.G.S., Mythili R., Saroja S. Correlation of microstructure with mechanical properties of TIG weldments of Ti–6Al–4V made with and without current pulsing. Materials Characterization. 2007; 58(7): 581–587.
  • 14. Bendikiene R., Baskutis S., Baskutiene J., Ciuplys A., Kacinskas T. Comparative study of TIG welded commercially pure titanium. Journal of Manufacturing Processes. 2018; 36: 155–163.
  • 15. Chamanfar A., Huang M.F., T., Tsukamoto M., Misiolek W.Z. Microstructure and mechanical properties of laser welded Ti–10V–2Fe–3Al (Ti1023) titanium alloy. Journal of Materials Research and Technology. 2020; 9: 7721–7731.
  • 16. Donachie M.J. Titanium A Technical Guide, 2nd ed. ASM International; 2000.
  • 17. Lütjering G., William J.C., Titanium. Springer-Verlag Berlin Heidelberg. New York; 2003.
  • 18. Min G., Wei Y., Zhan X., Gu C., Yu F. A coupled thermal and metallurgical model for welding simulation of Ti-6Al-4V alloy. Journal of Materials Processing Technology. 2014; 214: 2434–2443.
  • 19. Maawad E., Gan W., Hofmann M., Ventzke V., Riekehr S., Brokmeier H.G. Influence of crystallographic texture on the microstructure, tensile properties and residual stress state of laser-welded titanium joints. Materials & Design. 2016; 101: 137–45.
  • 20. Hsieh C.T., Shiue R.K., Huang R.T., Tsay L.W. The effect of post-weld heat treatment on the microstructure and notched tensile fracture of Ti–15V–3Cr–3Al–3Sn to Ti–6Al–4V dissimilar laser welds. Materials Science and Engineering: A. 2016;653:139–46.
  • 21. Liu J., Liu H., Gao X.L., Yu H. Microstructure and mechanical properties of laser welding of Ti6Al4V to Inconel 718 using Nb/Cu interlayer. Journal of Materials Processing Technology. 2020; 277: 116467.
  • 22. Elmi Hosseini S.R., Feng K., Nie P., Zhang K., Huang J., Li Z. Enhanced strength of 304 SS– Ti6Al4V laser-welded joints containing composite interlayers. Journal of Materials Engineering and Performance. 2018; 27: 6135–48.
  • 23. Gao F., Guo Y., Qiu S., Yu Y., Yu W. Fracture toughness of friction stir welded TA5 titanium alloy joint. Materials Science & Engineering A, 2020; 776: 138962.
  • 24. Rogalski G., Świerczyńska A., Landowski M., Fydrych D. Mechanical and Microstructural Characterization of TIG Welded Dissimilar Joints between 304L Austenitic Stainless Steel and Incoloy 800HT Nickel Alloy. Metals. 2020; 10: 559.
  • 25. Górka J., Przybyła M., Szmul M., Chudzio A., Ładak D. Orbital TIG welding of titanium tubes with perforated bottom made of titanium-clad steel. Advances in Materials Science. 2019; 19(3): 55–64.
  • 26. Jażdżewska M., Majkowska–Marzec B. Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy. Advances in Materials Science. 2017; 17(4): 5–13.
  • 27. Jozwik J. Evaluation of Tribological Properties and Condition of Ti6Al4V Titanium Alloy Surface. Tehnički Vjesnik. 2018; 25(1): 170–175.
  • 28. Jozwik J., Dziedzic K., Usydus I., Raos P., Krolczyk G.M. HS 6–5-2 steel surface layer development in carbonitriding with zeroflow method. Tehnički Vjesnik. 2016; 23(5): 1405–1409.
  • 29. Dziedzic K., Zubrzycka-Wróbel J., Józwik J., Barszcz M., Siwak P., Chałas R. Research on tribological properties of dental composite materials. Advances in Science and Technology Research Journal. 2016; 10(32): 144–149.
  • 30. Dewangan S., Mohapatra S.K., Sharma A. An assessment into mechanical properties and microstructural behavior of TIG welded Ti-6Al-4V titanium alloy. Grey Systems: Theory and Application. 2020; 10(3): 281–292.
  • 31. Dewangan S., Patel M.R., Singh R., Kumar A., Gope D.K., Kumar U. Temperature distribution analysis and hardness measurement into TIG welded stainless steel plates. AIP Conference Proceedings. 2019; 2148(1): 030043.
  • 32. Józwik J., Semotiuk L., Kuric I., Diagnostic of CNC lathe with QC 20 ballbar system. Advances in Science and Technology Research Journal. 2015; 9(28): 96–102.
  • 33. Dewangan S., Behera S., Chowrasia M.K. Comparative analysis into mechanical properties and microstructural attributes of quenched and tempered 0.2%-C steel. World Journal of Engineering. 2020; 17(1): 127–133.
  • 34. Dewangan S., Mainwal N., Khandelwal M., Jadhav P.S. Performance analysis of heat treated AISI 1020 steel samples on the basis of various destructive mechanical testing and microstructural attributes. Australian Journal of Mechanical Engineering. 2019: 1–14.
  • 35. Shielding gases for arc welding and cutting (access: 18th November 2020). https:// www.twi-global.com/technical-knowledge/ published-papers/shielding-gases-for-arc-welding-and-cutting-may-2001
  • 36. Welding of Titanium Alloys (access: 9th November 2020). http://www.totalmateria.com/Article28.htm
  • 37. Kumar U., Gope D., Srivastava J., Chattopadhyaya S., Das A., Krolczyk G. Experimental and Numerical Assessment of Temperature Field and Analysis of Microstructure and Mechanical Properties of Low Power Laser Annealed Welded Joints. Materials. 2018; 11(9): 1514.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7580eeae-d8d3-4c46-898d-1b693027f4dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.