PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical sampling based on ultrafast optical nonlinearities is a useful technique to monitor the waveforms of ultrashort optical pulses. In this paper, we present a new implementation of optical waveform sampling systems by employing our newly constructed free-running mode-locked fibre laser with a tunable repetition rate and a low timing jitter, an all-optical waveform sampler with a highly nonlinear fibre (HNLF), and our developed computer algorithm for optical waveform display and measurement, respectively. Using a femtosecond fibre laser to generate the highly stable optical sampling pulses and exploiting the four-wave mixing effect in a 100m-long HNLF, we successfully demonstrate the all-optical waveform sampling of a 10GHz optical clock pulse sequence with a pulse width of 1.8 ps and a 80Gbit/s optical data signal, respectively. The experimental results show that waveforms of the tested optical pulse signals are accurately reproduced with a pulse width of 2.0 ps. This corresponds to a temporal resolution of 0.87 ps for optical waveform measurement. Moreover, the optical eye diagram of a 10Gbit/s optical data signal with a 1.8 ps pulse width is also accurately measured by employing our developed optical sampling system.
Twórcy
autor
  • State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
autor
  • Biomedical Engineering and Communications Research Group, School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK
autor
  • Southwest China Research Institute of Electronic Equipment, Chengdu 610036, China
Bibliografia
  • 1. P.A. Andrekson and M. Westlund, “Nonlinear optical fibre based high resolution all-optical waveform sampling”, Laser & Photon. Rev. 1, 231–248 (2007).
  • 2. M. Westlund, P.A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, “High-performance optical-fibre-nonlinearity-based optical waveform monitoring”, J. Lightwave Technol. 23, 2012–2022 (2005).
  • 3. M. Shirane, Y. Hashimoto, H. Yamada, and H. Yokoyama, “A compact optical sampling measurement system using mode-locked laser-diode modules”, IEEE Photon. Technol. Lett. 12, 1537–1539 (2000).
  • 4. R.L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei and G. Sucha, “1-THz bandwidth C- and L-band optical sampling with a bit rate agile timebase”, IEEE Photon. Technol. Lett. 14, 1148–1150 (2002).
  • 5. N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses”, IEEE Photon. Technol. Lett. 16, 1125–1127 (2004).
  • 6. C. Schmidt-Langhorst, C. Schubert, C. Boerner, V. Marembert, S. Ferber, R. Ludwig, and H.G. Weber, “Optical sampling system including clock recovery for 320 Gbit/s DPSK and OOK data signals”, Proc. Optical Fibre Commun. Conf., Paper OWJ6, Anaheim, California, 2005.
  • 7. J. Li, M. Westlund, H. Sunnerud, B.E. Olsson, M. Karlsson, and P.A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fibre”, IEEE Photon. Technol. Lett. 16, 566–568 (2004).
  • 8. I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gbit/s optical signals based on optical sampling technique”, Electron. Lett. 36, 2087–2088 (2000).
  • 9. C. Schmidt-Langhorst, C. Schubert, C. Boerner and R. Ludwig, “Optical sampling technologies and applications”, Proc. Opt. Fibre Commun. Conf. Paper OTuG2, Anaheim, California, 2005.
  • 10. M. Westlund, H. Sunnerud, M. Karlsson, and P.A. Andrekson, “Software-synchronized all-optical sampling for fibre communication systems”, J. Lightwave Technol. 23, 1088–1099 (2005).
  • 11. M. Westlund, H. Sunnerud, M. Karlsson, and P. Andrekson, “Software-synchronized all-optical sampling”, Proc. Opt. Fibre Commun. Conf. pp. 409–410, Atlanta, 2003.
  • 12. H. Ji, H. Hu, M. Galili, L.K. Oxenlowe, M. Pu, K. Yvind, J.M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tbit/s serial data in a silicon nanowire”, Proc. Opt. Fibre Commun. Conf., Paper PDPC7, San Diego, 2010.
  • 13. J. Van Erps, F. Luan, M.D. Pelusi, T. Iredale, S. Madden, D.-Y. Choi, D.A. Bulla, B. Luther-Davies, H. Thienpont, and B.J. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As₂S₃ planar waveguides”, J. Lightwave Technol. 28, 209–215 (2010).
  • 14. H. Ohta, N. Banjo, N. Yamada, S. Nogiwa, and Y. Yanagisawa, “Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively modelocked fibre laser”, Electron. Lett. 37, 1541–1542 (2001).
  • 15. H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, “100Gbit/s optical waveform measurement with 0.6ps resolution optical sampling using subpicosecond supercontinuum pulses”, Electron. Lett. 30, 1152–1153 (1994).
  • 16. T. Kiatchanog, K. Igarashi, T. Tanemura, D. Wang, K. Katoh, and K. Kikuchi, “Real-time all-optical waveform sampling using a free-running passively mode-locked fibre laser as the sampling pulse source”, Proc. Opt. Fibre Commun. Conf., Paper OWN1, Anaheim, CA, 2006.
  • 17. I. Kang and K.F. Dreyer, “Sensitive 320 Gbit/s eye diagram measurements via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer”, Electron. Lett. 39, 1081–1083 (2003).
  • 18. Y. Liu, J.-G. Zhang, and W. Zhao, “Design of wideband, high-resolution optical waveform samplers based on a dispersion-flattened highly nonlinear photonic crystal fibre”, J. Opt. 14, 055201 (9pp), (2012).
  • 19. A. Otani, Y. Tsuda, K. Igawa, and K. Shida, “Novel optical sampling oscilloscope using envelope detection triggering method”, J. Lightwave Technol. 26, 2991–998 (2008).
  • 20. Y.S. Liu and J.-G. Zhang, “Design of low timing-jitter, stable picosecond optical-pulse source by using an uncooled gain-switched Fabry-Perot semiconductor laser with external continuous-wave light injection”, Microwave Opt. Technol. Lett. 53, 2100–2105 (2011).
  • 21. Y. Liu, J.-G. Zhang, G. Chen, W. Zhao, and J. Bai, “Low-timing-jitter, stretched-pulse passively mode-locked fibre laser with tunable repetition rate and high operation stability”, J. Opt. 12, 095204 (2010).
  • 22. D. Tang, J.-G. Zhang, and Y. Liu, “Highly stable, passively mode-locked fibre laser with low pump power for subpicosecond pulse generation”, Laser Phys. 22, 1586-1589 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-757dab7a-3e99-41a7-8656-34476dd02f58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.