Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to optimize the Tungsten Inert Gas (TIG) welding parameters for joining AISI 316L stainless steel and Cu-ETP copper using 309L stainless steel filler rods. Welding dissimilar materials is challenging due to their significant differences in thermal and mechanical properties. The high thermal conductivity of Cu-ETP copper leads to rapid heat dissipation, causing uneven heat distribution at the weld interface. To address this issue, the research team applied a 1 mm offset of the welding torch toward the copper side to balance the heat input. They employed statistical analyses using ANOVA and the Taguchi method to determine the optimal process parameters. The results showed that the optimal welding current, welding speed, and gas flow for achieving high tensile strength (Rm) are 90 A, 0.5 mm/s, and 12 l/min, respectively. Among these, welding speed emerged as the most significant factor, influencing 48.74% of the weld characteristics. Mechanical testing confirmed that these parameters produced high-quality welds. Metallurgical analysis revealed minimal diffusion between the materials, preserving their distinct properties while minimizing the formation of undesirable intermetallic phases. These results highlight the effectiveness of TIG welding in creating robust joints between AISI 316L stainless steel and Cu-ETP copper for applications requiring a combination of both materials' properties.
Wydawca
Rocznik
Tom
Strony
209--219
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
autor
- Research Center in Industrial Technologies (CRTI), PB 64, Chéraga, Algiers, Algeria
- Research Center in Industrial Technologies (CRTI), PB 64, Chéraga, Algiers, Algeria
autor
- Department of Mechanical Engineering, University of L’Arbi Ben M’hidi, Oum el Bouaghi, Algeria
autor
- Research Center in Industrial Technologies (CRTI), PB 64, Chéraga, Algiers, Algeria
autor
- Research Center in Industrial Technologies (CRTI), PB 64, Chéraga, Algiers, Algeria
Bibliografia
- 1. Razzaq S., Pan Z.X., Li H.J., Ringer S.P., Liao X.Z. Joining dissimilar metals by additive manufacturing: A review. J. Mater. Res. Technol. 2024, 31, 2820–2845. https://doi.org/10.1016/j.jmrt.2024.07.033
- 2. Abed Al Kareem, S.S., Mahdi, B.L., Hussein, H.K. Impact of TIG welding parameters on the mechanical properties of 6061-T6 aluminum alloy joints. Advances in Science and Technology Research Journal. 2023, 17(5), 114–129. https://doi.org/10.12913/22998624/171489
- 3. Conte, R., Battista, F.R., Ambrogio, G. Submerged arc welding process: enhancement of production performance based on metallurgical observations. Int J Adv Manuf Technol. 2024, 134, 781–793. https://doi.org/10.1007/s00170-024-14153-y
- 4. Benlamnouar, M.F., Bensaid, N., Saadi, T., Badji, R. Multi-objective optimization and evolution of dissimilar welding process between Cr-Mo steel and austenitic stainless steel for power plant application. Mater. Res. Express 2024, 11(2), 026507. https://doi.org/10.1088/2053-1591/ad28d2
- 5. Tong, L.G., Gu, J.C., Yin, S.W., Wang, L., Bai, S.W. Impacts of torch moving on phase change and fluid flow in weld pool of SMAW. Int J Heat Mass Transf. 2016, 100, 949–957. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.032
- 6. Deepati, A.K., Alhazmi, W., Zakri, W., Shaban, E., Biswas, P. Parametric analysis on the progression of mechanical properties on FSW of aluminum-copper plates. Advances in Science and Technology Research Journal. 2022, 16(2), 168–178. https://doi.org/10.12913/22998624/147123
- 7. Kilic, S., Ozturk, F., Demirdogen, M.F. A comprehensive literature review on friction stir welding: Process parameters, joint integrity, and mechanical properties. J. Eng. Res. 2023. https://doi.org/10.1016/j.jer.2023.09.005
- 8. Saadi, T., Benlamnouar, M.F., Bensaid, N., Boutaghane, A., Soualili, M.A., Hachemi, H. Optimization of automatic TIG welding parameters of AISI 304L ASS welds using response surface methodology. DDF 2021, 406, 319–333. https://doi.org/10.4028/www.scientific.net/ddf.406.319
- 9. Mojaver, P., Khalilarya, S., Chitsaz, A., Assadi, M. Multi-objective optimization of a power generation system based SOFC using Taguchi/AHP/TOPSIS triple method. Sustain. Energy Technol. Assess. 2020, 38, 100674. https://doi.org/10.1016/j.seta.2020.100674
- 10. Li, J., Hu, J., Cao, L., Wang, S., Liu, H., Zhou, Q. Multi-objective process parameters optimization of SLM using the ensemble of metamodels. J. Manuf. Process. 2021, 68, Part A, 198–209. https://doi.org/10.1016/j.jmapro.2021.05.038
- 11. Abtan, A.A., Mohammed, M.S., Alshalal, I. Microstructure, mechanical properties, and heat distribution ANSYS model of CP copper and 316 stainless steel torch brazing. Advances in Science and Technology Research Journal. 2024, 18(1), 167–183. https://doi.org/10.12913/22998624/177299
- 12. Vyas, H.D., Mehta, K.P., Badheka, V., Doshi, B. Microstructure evolution and mechanical properties of continuous drive friction welded dissimilar copper-stainless steel pipe joints. Mater. Sci. Eng. A. 2022, 832, 142444. https://doi.org/10.1016/j.msea.2021.142444
- 13. Cheng, Z., Huang, J., Ye, Z., Chen, Y., Yang, J., Chen, S. Microstructures and mechanical properties of copper-stainless steel butt-welded joints by MIG-TIG double-sided arc welding. J. Mater. Process. Technol. 2019, 265, 87–98. https://doi.org/10.1016/j.jmatprotec.2018.10.007
- 14. Zhu, L., Zhou, Q., Song, C., Liu, L., Zhang, L., Fan, K., Zhang, Y., Lu, H., Hu, Q., Sheng, Z., Guo, Y., Liu, K. Microstructure and mechanical properties of T2 copper/316L stainless steel explosive welding composite with small size wavy interface. J. Mater. Res. Technol. 2024, 28, 668–682. https://doi.org/10.1016/j.jmrt.2023.12.031
- 15. Ciou, Y.C., Chang, C.L., Lu, W.H., Lin, H.K. Mechanical and microstructural properties of dissimilar copper and stainless-steel butt welds prepared using zigzag and circular fiber laser oscillation methods. Mater. Sci. Eng. A. 2022, 859, 144178. https://doi.org/10.1016/j.msea.2022.144178
- 16. Mohamed, M.A., Manurung, Y.H., Berhan, M.N. Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology. J Mech Sci Technol. 2015, 29, 2323–2331. https://doi.org/10.1007/s12206-015-0527-x
- 17. Ragavendran, M., Chandrasekhar, N., Ravikumar, R., Saxena, R., Vasudevan, M., Bhaduri, A.K. Optimization of hybrid laser – TIG welding of 316LN steel using response surface methodology (RSM). Opt. Laser Eng. 2017, 94, 27–36. https://doi.org/10.1016/j.optlaseng.2017.02.015
- 18. Oleiwi, A.A., Jilabi, A.S.J. The effects of travel speed of tungsten inert gas cladding of tungsten carbide and nickel composites on the microstructure of stainless steel. Advances in Science and Technology Research Journal. 2024, 18(4), 177–190. https://doi.org/10.12913/22998624/188642
- 19. Dak, G., Guguloth, K., Vidyarthy, R.S., Fydrych, D., Pandey, C.C. Creep rupture study of dissimilar welded joints of P92 and 304L steels. Weld World. 2024. https://doi.org/10.1007/s40194-024-01757-x
- 20. Kumar, A., Guguloth, K., Pandey, S.M., Fydrych, D., Sirohi, S., Pandey, C. Study on microstructure-property relationship of Inconel 617 Alloy/304L SS steel dissimilar welds joint. Metall Mater Trans 2023. A 54, 3844–3870. https://doi.org/10.1007/s11661-023-07136-3
- 21. Tarng, Y.S., Yang, W.H., Juang, S.C. The use of fuzzy logic in the Taguchi method for the optimization of the submerged arc welding process. Int J Adv Manuf Technol. 2000, 16, 688–694. https://doi.org/10.1007/s001700070040
- 22. ASME. Qualification Standard for Welding and Brazing, An International Code of ASME Boiler and Pressure Vessel Committee on Welding and Brazing. USA, 2010.
- 23. Benlamnouar, M.F., Bensaid, N., Azzoug, M.O., Saadi, T., Zidani, M., Badji, R. Optimization and evaluation of mechanical and electrochemical properties of ferritic stainless steel welding using Taguchi design. KEM 2024, 973, 61–72. https://doi.org/10.4028/p-oqmgc5
- 24. Ananthakumar, K., Rajamani, D., Balasubramanian, E., Paulo Davim, J. Measurement and optimization of multi-response characteristics in plasma arc cutting of Monel 400 using RSM and TOPSIS. Measurement 2019, 135, 725–737. https://doi.org/10.1016/j.measurement.2018.12.010
- 25. Benlamnouar, M.F., Saadi, T., Bensaid, N., Gousmine, M., Touggui, Y., Temmar, M. Modelling and optimization of dissimilar welding between 304L and HSLA-X70 using response surface methodology. In: Durakbasa, N.M., Gençyılmaz, M.G. (eds) Digital Conversion on the Way to Industry 4.0. ISPR 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-62784-3_39
- 26. ASTM International. Standard Test Methods for Tension Testing of Metallic Materials. American National Standard, E8/E8M, 2010.
- 27. Chen, H., Huang, J., Xia, J., Zhao, X., Lin, S. Influence of processing parameters on the characteristics of stainless steel/copper laser welding. J. Mater. Process. Technol. 2015, 222, 43–51. https://doi.org/10.1016/j.jmatprotec.2015.03.003
- 28. Meng, Y., Li, X., Gao, M., Zeng, X. Microstructures and mechanical properties of laser-arc hybrid welded dissimilar pure copper to stainless steel. Opt. Laser Technol. 2019, 111, 140–145. https://doi.org/10.1016/j.optlastec.2018.09.05
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75760dea-1bae-4c1d-85d0-fa3068dc0a95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.