PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of the k-means clustering method in the prediction of the primary and secondary mineral composition of sandstones : a case study from Lower and Middle Jurassic rocks in the Polish Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Comprehensive knowledge of both the primary and secondary mineral composition of rocks, as well as the diagenetic processes occurring within them, stands as a fundamental requirement for accurately estimating reservoir rock parameters across various geological sectors, such as petroleum geology, geothermal energy, and carbon capture and storage. In the era of widespread automatization, machine learning methods are increasingly being used for interpretation, which, with the support of appropriate datasets and the experience of interpreters, make it possible to draw a variety of conclusions about geological processes occurring within selected geological formations, as well as entire sedimentary basins. We describe the application of the k-means clustering method for the rapid prediction of primary and diagenetic mineral composition using the the example of Lower and Middle Jurassic sandstones in the Polish Basin - one of the main aquifers and a potential reservoir formation. The model was based on the correlation between neutron porosity (NPHI), bulk density (RHOB), interval transit time (DT), deep resistivity (LLD), total natural gamma-ray (GR) and spectral gamma-ray values (K, Th, U), correlated with the results of petrographic, petrophysical and qualitative geochemical analysis. This correlation was the basis for distinguishing 5 different sandy petrofacies with variable primary and diagenetic characteristics typical of Jurassic sandstones in the Polish Basin.
Rocznik
Strony
art. no. 30
Opis fizyczny
Bibliogr. 79 poz., fot., rys., tab., wykr.
Twórcy
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • ORLEN S.A. PGNiG Exploration and Production Branch in Warsaw, Marcina Kasprzaka 25A, 01-224, Warszawa, Poland
autor
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Abdi, H., Williams, L.J., 2010. Principal component analysis. WIREs Computational Statistics, 2: 33-459.
  • 2. Adeoti, L., Ayolabi, E.A., James, P.L., 2009. An integrated approach to volume of shale analysis: Niger Delta example, Offrire Field. World Applied Sciences Journal, 7: 448-452.
  • 3. Ali, N., Chen, J., Fu, X., Hussain, W., Ali, M., Iqbal, S.M., Anees, A., Hussain, M., Rashid, M., Thanh, H.V., 2023. Classification of reservoir quality using unsupervised machine learning and cluster analysis: Example from Kadanwari gas field, SE Pakistan. Geosystems and Geoenvironment, 2, 100123; https://doi.org/10.1016/j.geogeo.2022.100123
  • 4. Andrew, A.L., 1973. Eigenvectors of certain matrices. Linear Algebra and its Applications, 7: 151-162.
  • 5. Asquith, G., Krygowski, D., 2004. Basic Well Log Analysis, 2nd edn. The American Association of Petroleum Geologists, Tulsa, Oklahoma.
  • 6. Bhattacharya, S., 2022. Unsupervised time series clustering, class-based ensemble machine learning, and petrophysical modeling for predicting shear sonic wave slowness in heterogeneous rocks. Geophysics, 87: D161-D174; https://doi.org/10.1190/geo2021-0478.1
  • 7. Chang, J., Li, J., Kang, Y., Lv, W., Xu, T., Li, Z., Xing Zheng, W., Han, H., Liu, H., 2021. Unsupervised domain adaptation using max i mum mean discrepancy optimization for lithology identification. Geophysics, 86: ID19-lD30; https://doi.org/10.1190/geo2020-0391.1
  • 8. Churchman, G.J., Lowe, D.J., 2012. Alteration, formation, and occurrence of minerals in soils. In: Handbook of Soil Sciences. 2nd edition., 1: Properties and Processes (eds. P.M. Huang, Y Li and M.E. Sumner): 1-72. CRC Press (Taylor & Francis), Boca Raton, FL.
  • 9. Cui, Y., Wang, G., Jones, S.J., Zhou, Z., Ran, Y., Lai, J., Li, R., Deng, L., 2017. Prediction of diagenetic facies using well logs - A case study from the upper Triassic Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 81: 50-65; https://doi.org/10.2516/ogst/2014060
  • 10. Dadlez, R., 1997. Epicontinental basins in Poland: Devonian to Cretaceous - relationships between the crystalline basement and sedimentary infill. Geological Quarterly, 41 (4): 419-432.
  • 11. Dadlez, R., 1998. Devonian to Cretaceous epicontinental basins in Poland: relationship between their development and structure (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 165: 17-30.
  • 12. Dadlez, R., Marek, S., 1969. Structural style of the Zechstein-Mesozoic complex in some areas of the Polish Lowland (in Polish with English summary). Geological Quarterly, 13 (3): 543-565.
  • 13. Dadlez, R., Marek, S., Pokorski, J., 1998. Palaeogeographical Atlas of the Epicontinental Permi an and Mesozoic in Pol and. Państwowy Instytut Geologiczny, Warszawa.
  • 14. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., Van Wees, J.D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195; https://doi.org/10.1016/0040-1951(95)00104-2
  • 15. Dayczak-Calikowska, K., 1964. Atlas geologiczny Polski - Zagadnienia stratygraficzno-facjalne, z. 9 Jura, cz. II Jura środkowa (in Polish). Wyd. Geol., Warszawa.
  • 16. Dayczak-Calikowska, K., 1997. Middle Jurassic. Sedimentation, paleogeography and paleotectonics (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 153: 269-282.
  • 17. Dayczak-Calikowska, K., Moryc, W., 1988. Evolution of sedimentary basin and palaeotectonics of the Middle Jurassic in Poland (in Polish with English summary). Geological Quarterly, 32 (1): 117-136.
  • 18. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L., 2000. The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems, 50: 1-18; https://doi.org/10.1016/S0169-7439(99)00047-7
  • 19. De Ros, L., Fernando, Goldberg, K., 2007. Reservoir petrofacies: a tool for quality characterization and prediction. AAPG Annual Convention and Exhibition, Long Beach, CA.
  • 20. Feldman-Olszewska, A., 1997a. Depositional systems and cyclicity in the intracratonic Early Jurassic basin in Poland. Geological Quarterly, 41 (4): 475-490.
  • 21. Feldman-Olszewska, A., 1997b. Depositional archi tecture of the Polish epicontinental Middle Jurassic basin. Geological Quarterly, 41 (4): 491-508.
  • 22. Feldman-Olszewska, A., 1998. Lower and Middle Jurassic. In: Palaeogeographical Atlas of the Epicontinental Permian and Mesozoic in Poland (eds. R. Dadlez, S. Marek and J. Pokorski). Państwowy Instytut Geologiczny, Warszawa.
  • 23. Feldman-Olszewska, A., 2005. Sedimentary environments of the Middle Jurassic epicontinental deposits from the central part of the Polish Basin (Kuyavian Region). Volumina Jurassica, 3: 130-131.
  • 24. Ghorbani, H., 2019. Mahalanobis distance and its application for detecting multivariate outliers. Facta Universitatis, Series: Mathematics and Informatics, 34: 583-595; https://doi.org/10.22190/FUMI1903583G
  • 25. Gutowski, J., Krzywiec, P., Walaszczyk, I., Pożaryski, W., 2003. Od ekstensji do inwersji - zapis aktywności północno- wschodniej brzeżnej strefy uskokowej świętokrzyskiego segmentu bruzdy śród polskiej w osadach jury górnej i kredy na podstawie interpretacji danych sejsmiki refleksyjnej (in Polish). Volumina Jurassica, 1: 124-125.
  • 26. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Rio, J.F., Wiebe, M., Peterson, P., Gerard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with NumPy. Nature, 585: 357-362; https://doi.org/10.1038/s41586-020-2649-2
  • 27. Hartigan, J.A., Wong, M.A., 1979. A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28: 100-108.
  • 28. Hussein, M., Stewart, R.R., Sacrey, D., Wu, J., Athale, R., 2021. Unsupervised machine learning using 3D seismic data applied to reservoir evaluation and rock type identification. Interpretation, 9: T549-T568; https://doi.org/10.1190/INT-2020-0108.1 Ingersoll, R.V., 1990. Actualistic sandstone petrofacies: discriminating modern and ancient source rocks. Geology, 18: 733-736; https://doi.org/10.1130/0091-7613(1990)018<0733:ASPDMA>2.3 .CO;2
  • 29. Ippolito, M., Ferguson, J., Jenson, F., 2021. Improving facies prediction by combining supervised and unsupervised learning methods. Journal of Petroleum Science and Engineering, 200, 108300; https://doi.org/10.1016/j.petrol.2020.108300
  • 30. Jolliffe, I., 2005. Principal Component Analysis. In: Encyclopedia of Statistics in Behavioral Science (eds. B.S. Everitt and D. Howell). John Wiley & Sons, Ltd., New York.
  • 31. Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150202; https://doi.org/10.1098/rsta.2015.0202
  • 32. Karelus, U., Modzelewski, R., 1996. Dokumentacja wynikowa odwiertu poszukiwawczego Bielsk 2 (in Polish). Narodowe Archiwum Geologiczne (nr 133804), Warszawa.
  • 33. Karnkowski, P.H., 1999. Origin and evolution of the Polish Rotliegend basin. Polish Geological Institute Special Papers, 3: 1-93.
  • 34. Kopik, J., 1998. Lower and Middle Jurassic of the north-eastern margin of the Upper Silesian Coal Basin (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 378: 67-129.
  • 35. Kotański, Z., 1997. Geological Atlas of Poland: Geological Maps of Horizontal Cutting 1:750 000. Państwowy Instytut Geologiczny, Warszawa.
  • 36. Kozłowska, A., Kuberska, M., 2014. Diagenesis and porosity of the Lower Jurassic sandstones in the Polish Lowlands (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 458: 39-60.
  • 37. Kozłowska, A., Maliszewska, A., 2015. Berthierine in the Middle Jurassic sideritic rocks from southern Poland. Geological Quarterly, 59 (4): 551-564; https://doi.org/10.7306/gq.1231
  • 38. Krystkiewicz, E., 1999. Lower Jurassic (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 167: 64-77.
  • 39. Krzywiec, P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough - lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-168.
  • 40. Krzywiec, P., Kramarska, R., Zientara, P., 2003. Strike-slip tectonics within the SW Baltic Sea and its relationship to the inversion of the Mid-Polish Trough - evidence from high-resolution seismic data. Tectonophysics, 373: 93-105; https://doi.org/10.1016/S0040-1951(03)00286-5
  • 41. Leonowicz, P., 2005. The Ciechocinek Formation (Lower Jurassic) of SW Poland: petrology of green clastic rocks. Geological Quarterly, 49 (3): 317-330.
  • 42. Lewandowski, M., Krobicki, M., Matyja, B.A., Wierzbowski, A., 2005. Palaeogeographic evolution of the Pieniny Klippen Basin using stratigraphic and palaeomagnetic data from the Veliky Kamenets section (Carpathians, Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology, 216: 53-72; https://doi.org/10.1016Zj.palaeo.2004.10.002
  • 43. Likas, A., Vlassis, N., J. Verbeek, J., 2003. The global k-means clustering algorithm. Pattern Recognition, 36: 451-461.
  • 44. Lis-Śledziona, A., 2019. Petrophysical rock typing and permeability prediction in tight sandstone reservoir. Acta Geophysica, 67: 1895-1911; https://doi.org/10.1007/s11600-019-00348-5
  • 45. Loutit, T.S., Hardenbol, J., Vail, P.R., Baum, G.R., 1988. Condensed sections: The key to age determination and correlation of continental margin sequences. SEPM Special Publication, 42: 39-45; https://doi.org/10.2110/pec.88.01.0183
  • 46. Maliszewska, A., 1999. Middle Jurassic (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 167: 78-93.
  • 47. Maliszewska, A., 1968. The mineralization of Dogger deposits based on the example of Głogowiec borehole (in Polish with English summary). Geological Quarterly, 12 (1): 105-116.
  • 48. Marek, S.,Pajchlowa, M., eds., 1997. The epicontinental Permian and Mesozoic in Poland (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 153.
  • 49. Matyja, B.A., Wierzbowski, A., 2006. The oceanic “Metis Geotectonic Event” (Callovian/ Oxfordian) and its implicaiions for the Peri-Tethyan area of Poland. Volumina Jurassica, 4: 60-61.
  • 50. McKinney, W., 2010. Data Structures for Statistical Computing in Python. Python in Science Conference, 56-61; https://doi.org/10.25080/Majora-92bf1922-00a
  • 51. Modliński, Z., ed., 1974. Bartoszyce IG-1, Gołdap IG-1 (in Polish). Profile głębokich otworów wiertniczych Instytutu Geologicznego, 14.
  • 52. Mohammadian, E., Kheirollahi, M., Liu, B., Ostadhassan, M., Sabet, M., 2022. A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran. Scientific Reports, 12, 4505; https://doi.org/10.1038/s41598-022-08575-5
  • 53. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12: 2825-2830.
  • 54. Pettijohn, F.J., Potter, P.E., Siever, R., 2012. Sand and Sandstone. Springer Science & Business Media, New York.
  • 55. Pieńkowski, G., 2004. The epicontinental Lower Jurassic in Poland. Polish Geological Institute Special Papers, 12: 5-154.
  • 56. Premik, J., 1933. Budowa i dzieje geologiczne okolic Częstochowy (in Polish). Drukarnia Łazarskiego, Warszawa.
  • 57. Rider, M.H., 2002. The Geological Interpretation of Well Logs, 2nd edn. Rider-French Consulting, Sutherland.
  • 58. Ringnér, M., 2008. What is principal component analysis? Nature Biotechnology, 26: 303-304.
  • 59. Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20: 53-65.
  • 60. Serra, O., 1984. Fundamentals of Well-log Interpretation: The interpretation of logging data. Elsevier, Amsterdam.
  • 61. Sinaga, K.P., Yang, M.S., 2020. Unsupervised k-means clustering algorithm. IEEE Access, 8: 80716-80727; https://doi.org/10.1109/ACCESS.2020.2988796
  • 62. Singh, A., Ojha, M., 2022. Machine learning in the classification of lithology using downhole NMR data of the NGHP-02 expedition in the Krishna-Godavari offshore Basin, India. Marine and Petroleum Geology, 135: 105443; https://doi.org/10.1016/j.marpetgeo.2021.105443
  • 63. Steinley, D., 2006. K-means clusiering: a half-ceniury synihesis. The British Journal of Mathematical and Statistical Psychology, 59: 1-34.
  • 64. Stephenson, R.A., Narkiewicz, M., Dadlez, R., Van Wees, J.D., Andriessen, P., 2003. Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156: 59-70; https://doi.org/10.1016/S0037-0738(02)00282-8
  • 65. Szabó, N.P., 2011. Shale volume estimation based on the factor analysis of well-logging data. Acta Geophysica, 59: 935-953.
  • 66. Teofilak, A., 1960. Petrografia liasu i doggeru w wierceniu Gorzów Wielkopolski IG-1 (in Polish). Narodowe Archiwum Geologiczne (nr 54429), Warszawa.
  • 67. Teofilak, A., 1962. Jura dolna - Charakterystyka petrograficzna głównych typów skał; Dogger - Charakterystyka petrograficzna głównych typów skał (in Polish). In: Budowa geologiczna niżu polskiego (ed. M. Pożaryski). Wyd. Geol., Warszawa.
  • 68. Vail, P.R., Hardenbol, J., Todd, R.G., 1984. Jurassic unconformities, chronostratigraphy, and sea-level changes from seismic stratigraphy and biostratigraphy. AAPG Memoir, 36: 129-144.
  • 69. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A.R.J. , Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., Vander Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors, 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17: 261-272.
  • 70. Wang, F., Franco-Penya, H.-H., Kelleher, J.D., Pugh, J., Ross, R., 2017. An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity. In: Machine Learning and Data Mining in Pattern Recognition (ed. P. Perner): 291-305. Springer International Publishing, Cham.
  • 71. Wang, H., Lu, S., Qiao, L., Chen, F., He, X., Gao, Y., Mei, J., 2022. Unsupervised contrastive learning for few-shot TOC prediction and application. International Journal of Coal Geology, 259, 104046; https://doi.org/10.1016/j.coal.2022.104046
  • 72. Willis, J.J., Mcintosh, D.S., Jr, Zwennes, J.W., Ferguson, G.J., 2017. Quick-look technique for quantifying shale distribution types using total porosity versus shale volume crossplots. Gulf Coast Association of Geological Societies Transactions, 67: 539-549.
  • 73. Wróblewska, S.M., 2022. The application of archival borehole data to recognizing the primary mineral composition and diagenetic changes in Jurassic sandy rocks of the Polish Basin. Geological Quarterly, 66, 24; https://doi.org/10.7306/gq.1656
  • 74. Wróblewska, S.M., Kozłowska, M., 2019. Influence of primary composition and diagenetic mineralization on natural gamma-ray and density logs of Carboniferous sandstones of the Dęblin Formation. Geological Quarterly, 63 (4): 741-756; https://doi.org/10.7306/gq.1498
  • 75. Zheng, A., Casari, A., 2018. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O'Reilly Media, Inc.
  • 76. Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.V.
  • 77. Znosko, J., 1957. Upward movements of Kłodawa salt diapir and its influence on genesis of sideritic coquinaes (in Polish with English summary). Geological Quarterly, 1 (1): 90-104.
  • 78. Znosko, J., 1968. Transgressive oscillations of the Dogger sea between Gorzów Wielkopolski and Zakrzewo (in Polish with English summary). Geological Quarterly, 12 (2): 308-315.
  • 79. Żelaźniewicz, A., Aleksandrowski, P., A., Buła, Z., Karnkowski, P., Konon, A., Slączka, A., Żaba, J., Żytko, K., 2011. Polska bez pokrywy kenozoicznej (in Polish). In: Regionalizacja tektoniczna Polski: 25-28. Komitet Nauk Geologicznych PAN, Wrocław.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75754b0b-e77f-497c-a846-8ec0c934d3e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.