PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of the heat balance results of the selected Tier III-compliant gas-fuelled two-stroke main engines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-stroke engines are distinguished by the highest overall efficiency among all main engines. This is not only due to the low speed, and large piston stroke, but also to the high combustion temperature, which results in an increase in nitrogen oxides (NOx) emission. Technical solutions applied to bring main engines into compliance with current NOx emission standards set by the Tier III limits include the use of SCR and EGR systems, the implementation of the Otto cycle, and the application of liquified natural gas (LNG) as the low-emission fuel. Impact of the available Tier III-compliant technologies on the heat balance results is analysed using the example of the currently most popular dual-fuel main engines, i.e. WinGD X92DF and MAN G95ME-C10.5-GI. The possibilities of waste heat recovery in the electricity generation process and thereby improving the ship energy efficiency are discussed.
Czasopismo
Rocznik
Strony
24--28
Opis fizyczny
Bibliogr. 24 poz., 1 rys., wykr.
Twórcy
autor
  • Doctoral School of the Maritime University of Szczecin, Poland
Bibliografia
  • [1] Andreasen JG, Meroni A, Haglind F. A comparison of organic and steam Rankine cycle power systems for waste heat recovery on large ships. Energies. 2017;10:547. https://doi.org/10.3390/en10040547
  • [2] Brzeżański M, Mężyk P. Heat balance of the military vehicle. Combustion Engines. 2017;170(3):131-134. https://doi.org/10.19206/CE2017-322
  • [3] Hochgreb S. Handbook of Air Pollution from Internal Combustion Engines. Academic Press. San Diego 1998.
  • [4] International Maritime Organisation. IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation, Module 2 - Ship Energy Efficiency Regulations and Related Guidelines. https://www.imo.org/en/OurWork/Environment/Pages/IMO-Train-the-Trainer-Course.aspx (accessed on 24.11.2022)
  • [5] Ivanova G. Analysis of the specifics in calculating the index of existing marine energy efficiency EEXI in force since 2023. 2021 13th Electrical Engineering Faculty Conference. 2021:1-4. https://doi.org/10.1109/BulEF53491.2021.9690805
  • [6] Kniaziewicz T, PiasecznyL. Selected aspects of application of dual fuel marine engines. Combustion Engines. 2021; 148(1):25-34. https://doi.org/10.19206/CE-117048
  • [7] Korlak PK. Prediction of the ultra-large container ships’ propulsion power at the initial design stage. Communications - Scientific Journals of the University of Zilina. 2022; 24(3):228-238. https://doi.org/10.26552/com.C.2022.3.B228-B238
  • [8] Korlak PK. Prediction of the very- and ultra-large container ships’ electricity generation capacity at the initial design stage. Naše More. 2022;69(2):103-113. https://doi.org/10.17818/NM/2022/2.5
  • [9] Krakowski R. The emissions reduction possibility of sulphur compounds of vessel sailing in Emission Control Area (ECA). Combustion Engines. 2017;169(2):162-166. https://doi.org/10.19206/CE-2017-229
  • [10] Latarche M. Pounder’s marine diesel engines and gas turbines. Tenth edition. Elsevier Science. Oxford 2020.
  • [11] Liberacki R. Niekonwencjonalne metody odzysku ciepła odpadowego na statkach. Journal of Polish CIMEEAC. 2019;14. http://www.polishcimeeac.pl/Papers1/2019/013.pdf
  • [12] MAN Diesel & Turbo. Costs and benefits of LNG as ship fuel for container vessels. Copenhagen 2013.
  • [13] MAN Diesel & Turbo. Tier III two-stroke technology. Copenhagen 2013.
  • [14] MAN Diesel & Turbo. Waste Heat Recovery System (WHRS) for reduction of fuel consumption, emissions and EEDI. Copenhagen 2017.
  • [15] MAN Energy Solutions. Marine engine programme 2022. Copenhagen 2022.
  • [16] Molland AF. The Maritime Engineering Reference Book. Elsevier Science. Oxford 2008.
  • [17] Mondejar ME, Andreasen JG, Pierobon L, Larsen U, Thern M, Haglind F. A review of the use of organic Rankine cycle power systems for maritime applications. Renew Sust Energ Rev. 2018;91:126-151. https://doi.org/10.1016/j.rser.2018.03.074
  • [18] Sagin S, Kuropyatnyk O, Sagin A, Tkachenko I, Fomin O, Píštěk V, Kučera P. Ensuring the Friendliness of Drillships during Their Operation in Special Ecological Regions of Northern Europe. J Mar Sci Eng. 2022;10:1331. https://doi.org/10.3390/jmse10091331
  • [19] Singh DV, Pedersen E, A review of waste heat recovery technologies for maritime applications. Energ Convers Manage.2016;111:315-328. https://doi.org/10.1016/j.enconman.2015.12.073
  • [20] Szelangiewicz T, Żelazny K. CO2 emission level as a criterion in modern transport ship design. Combustion Engines. 2014;156(1):59-68. https://doi.org/10.19206/CE-116953
  • [21] WinGD. Low-pressure X-DF engines FAQ. Winterthur 2020.
  • [22] WinGD. Low-speed engines 2022. Winterthur 2022.
  • [23] WinGD. Selective Catalytic Reduction FAQ. Winterthur 2020.
  • [24] Wojnowski W. Okrętowe siłownie spalinowe. Cz. I. Wydawnictwo Akademii Marynarki Wojennej w Gdyni. Gdynia 1998.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-756de647-bc5e-4a75-80b1-3c95ad960df5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.