PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterizations of compact operators on ℓp-type fractional sets of sequences

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the sets of sequences studied, difference sets of sequences are probably the most common type of sets. This paper considers some ℓp-type fractional difference sets via the gamma function. Although, we characterize compactness conditions on those sets using the main key of Hausdorff measure of noncompactness, we can only obtain sufficient conditions when the final space is ℓ∞. However, we use some recent results to exactly characterize the classes of compact matrix operators when the final space is the set of bounded sequences.
Wydawca
Rocznik
Strony
105--115
Opis fizyczny
Bibliogr. 37 poz., tab.
Twórcy
autor
  • Department of Engineering Sciences, İzmir Katip Çelebi University, 35620, Izmir, Turkey
Bibliografia
  • [1] Baliarsingh P., Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput., 2015, 219(18), 9737–9742
  • [2] Çolak R., Et M., On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 1997, 26(3), 483–492
  • [3] Djolović I., Malkowsky E., Matrix transformations and compact operators on some newmth order difference sequences,Appl. Math. Comput., 2008, 198(2), 700–714
  • [4] Kızmaz H., On certain sequence spaces, Canad. Math. Bull., 1981, 24(2), 169–176
  • [5] Alotaibi A., Raj K., Alkhaldi A. H., Mohiuddine S. A., Lacunary sequence spaces defined by Euler transform and Orlicz functions, J. Comput. Anal. Appl., 2019, 27(5), 770–780
  • [6] Karaisa K., Özger F., Almost difference sequence space derived by using a generalized weighted mean, J. Comput. Anal. Appl., 2015, 19(1), 27–38
  • [7] Kama R., Altay B., Weakly unconditionally Cauchy series and Fibonacci sequence spaces, J. Inequal. Appl., 2017, 2017(133), DOI: 10.1186/s13660-017-1407-y
  • [8] Malkowsky E., Özger F., Veličković V., Some mixed paranorm spaces, Filomat, 2017, 31(4), 1079–1098
  • [9] Malkowsky E., Özger F., A note on some sequence spaces of weighted means, Filomat, 2012, 26(3), 511–518
  • [10] Nuray F., Ulusu U., Dündar E., Lacunary statistical convergence of double sequences of sets, Soft Comput., 2016, 20, 2883–2888
  • [11] Karaisa K., Özger F., On almost convergence and difference sequence spaces of ordermwith core theorems, Gen. Math. Notes, 2015, 26(1), 102–125
  • [12] Aydın C., Başar F., Some new difference sequence spaces, Appl. Math. Comput., 2004, 157(3), 677–693
  • [13] Özger F., Başar F., Domain of the double sequential band matrix B(ř, š) on some Maddox’s spaces, AIP Conf. Proc., 2012,1470, 152–155
  • [14] Özger F., Başar F., Domain of the double sequential band matrix B(ř, š) on some Maddox’s spaces, Acta Math. Sci. Ser. B Engl. Ed., 2014, 34(2), 394–408
  • [15] Polat H., Altay B., On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 2006, 30, 209–220
  • [16] Kilinc G., Candan M., Some generalized Fibonacci difference sequence spaces defined by a sequence of modulus functions, Facta Univ. Ser. Math. Inform., 2017, 32(1), 95–115
  • [17] Kirişçi M., Başar F., Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 2010, 60(5), 1299–1309
  • [18] Mursaleen M., Karakaya V., Polat H., Şimşek N., Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl., 2011, 62(2), 814–820
  • [19] Yavuz E., Talo Ö., Abel summability of sequences of fuzzy numbers, Soft Comput., 2016, 20, 1041–1046
  • [20] Malkowsky E., Özger F., Veličković V., Some spaces related to Cesaro sequence spaces and an application to crystallography, MATCH Commun. Math. Comput. Chem., 2013, 70(3), 867–884
  • [21] Malkowsky E., Özger F., Veličković V., Matrix transformations on mixed paranorm spaces, Filomat, 2017, 31(10), 2957–2966
  • [22] Veličković V., Malkowsky E., Özger F., Visualization of the spaces W(u, v; ℓp) and their duals, AIP Conf. Proc., 2016, 1759, DOI: 10.1063/1.4959634
  • [23] Özger F., Some geometric characterizations of a fractional Banach set, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 2019, 68(1), 546–558
  • [24] Malkowsky E., Özger F., Compact operators on spaces of sequences of weighted means, AIP Conf. Proc., 2012, 1470, 179–182
  • [25] Malkowsky E., Özger F., Alotatibi A., Some notes on matrix mappings and their Hausdorff measure of noncompactness, Filomat, 2014, 28(5), 1059–1072
  • [26] Kara E. E., Başarır M., Mursaleen M., Compactness of matrix operators on some sequence spaces derived by Fibonacci Numbers, Kragujevac J. Math., 2015, 39(2), 217–230
  • [27] Mursaleen M., Noman A. K., Compactness by Hausdorff the measures of noncompactness, Nonlinear Anal., 2010, 73(8), 2541–2557
  • [28] Özger F., Compact operators on the sets of fractional difference sequences, Sakarya University Journal of Science, 2019, 23(3), DOI: 10.16984/saufenbilder.463368
  • [29] Furkan H., On some λ difference sequence spaces of fractional order, J. Egypt. Math. Soc., 2017, 25, 37–42
  • [30] Kadak U., Baliarsingh P., On certain Euler difference sequence spaces of fractional order and related dual properties, J. Nonlinear Sci. Appl., 2015, 8(6), 997–1004
  • [31] Petković K., Some new results related to compact matrix operators in the classes A ∈ ((ℓp)T, ℓ∞), Acta Math. Sci. Ser. B Engl. Ed., 2015, 31(8), 1339–1347
  • [32] Sargent W. L. C., On compact matrix transformations between sectionally bounded BK spaces, J. London Math. Soc., 1966, 41, 79–87
  • [33] Wilansky A., Summability through functional analysis, North–Holland Mathematics Studies, 85, Amsterdam, New York, Oxford, 1984
  • [34] Malkowsky E., Rakočević R., An introduction into the theory of sequence spaces and measures of noncompactness, Zb. Rad. (Beogr.), 2000, 9(17), 143–234
  • [35] Malkowsky E., Rakočević R., On matrix domains of triangles, Appl. Math. Comput., 2007, 189, 1148–1163
  • [36] Djolović I., Malkowsky E., A note on compact operators on matrix domains, J. Math. Anal. Appl., 2008, 340, 291–303
  • [37] Stieglitz M., Tietz H., Matrixtransformationen von Folgenräumeneine Ergebnisübersicht, Math. Z., 1977, 154, 1–16
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-756ad8e9-671c-477f-bb38-d9e8176c70d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.