PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribological behavior, mechanical properties and microstructure of Al-12Si-ZrC composite prepared by powder metallurgy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-energy mechanical alloying method was used to prepare Al-12Si-xZrC (x = 0, 5, 10, 15 wt. %) nanocomposites. Cylindrical preforms were prepared with an initial preform density of 89% by using a suitable die and punch assembly. The preforms were sintered in a muffle furnace with an inert gas atmosphere at a temperature of 550°C, followed by cooling until room temperature has been attained. Scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques were used to characterize the composites. Pin-on-disc wear testing machine was used to determine the tribological properties of the prepared composites. The results show that the wear loss reduced with increasing the reinforcement content and coefficient of friction increases gradually.
Rocznik
Strony
149--154
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Mechanical Engineering, CSI Institute of Technology, Thovalai 629302, Tamilnadu, India.
autor
  • Department of Mechanical Engineering, CSI Institute of Technology, Thovalai 629302, Tamilnadu, India.
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamilnadu, India.
autor
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamilnadu, India.
Bibliografia
  • [1] R. Harichandran and N. Selvakumar, “Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process”, Archives of Civil and Mechanical Engineering 16 (1), 147-158 (2016).
  • [2] M.M.H. Bastwrosa, A.M.K. Esawi, and A. Wifi, “Friction and wear behavior of Al-CNT composites”, Wear 307 (1-2), 164-173 (2013).
  • [3] Y. Wang, W.M. Rainforth, H. Jones, and M. Lieblich, “Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy-Ni3Al powder metallurgy composite”, Wear 251 (1-12), 1421-1432 (2001).
  • [4] A. Abdollahi, A. Alizadeh, and H.R. Baharvandi, “Dry sliding tribological behavior and mechanical properties of Al2024-5 wt. %B4C nanocomposites produced by mechanical milling and hot extrusion”, Materials and Design 55, 471-481(2014).
  • [5] J. Corrochano, J.C. Walker, M. Lieblich, J. Ibáñez, and W.M. Rainforth, “Dry sliding wear behaviour of powder metallurgy Al-Mg-Si alloy-MoS2 composites and the relationship with the microstructure”, Wear 270 (9-10), 658-665 (2011).
  • [6] M. Lieblich, J. Corrochano, J. Ibáñez, V. Vadillo, J.C. Walker, and W.M. Rainforth, “Subsurface modifications in powder metallurgy aluminium alloy composites reinforced with intermetallic MoS2 particles under dry sliding wear”, Wear 309 (1-2), 126-133 (2014).
  • [7] D. Jun, L. Yao-hui, Y. Si-rong and Li Wen-fang, “Dry sliding friction and wear properties of Al2O3and carbon short fibres reinforced Al-12Si alloy hybrid composites”, Wear 257 (9-10), 930-940 (2004).
  • [8] H. Ahlatci, T. Kocer, E. Candan, and H. Cimenoglu, “Wear behaviour of Al/(Al2O3p+SiCp) hybrid composites”, Tribology International 39 (3), 213-220 (2006).
  • [9] G. Abouelmagd, “Hot deformation and wear resistance of P/M aluminium metal matrix composites”, Journal of Materials Processing Technology 155-156, 1395-1401 (2004).
  • [10] T. Rajmohan, K. Palanikumar, and S. Arumugam, “Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nano copper oxide particles and micro silicon carbide particles”, Composites: Part B 59, 43-49 (2014).
  • [11] N. Selvakumar and S.C.E. Singh, “Influence of nano ZrC content on tribological analysis, microstructure and mechanical properties of Cu-4Cr matrix composites produced by hot extrusion”, Archives of Civil and Mechanical Engineering 16 (3), 537-552 (2016).
  • [12] K. Naplocha and K. Granat, “Dry sliding wear of Al/Saffil/C hybrid metal matrix composites”, Wear 265 (11-12), 1734-1740 (2008).
  • [13] S.C.E. Singh and N. Selvakumar, “Effect of milled B4C nanoparticles on tribological analysis, microstructure and mechanical properties of Cu-4Cr matrix produced by hot extrusion”, Archives of Civil and Mechanical Engineering, 17 (2), 446-456 (2017).
  • [14] S. Suresh and B.K. Sridhara, “Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates”, Composites Science and Technology 70 (11), 1652-1659 (2010).
  • [15] S. Soleymani, A. Abdollah-zadeh, and S.A. Alidokht, “Microstructural and tribological properties of Al 5083-based surface hybrid composite produced by friction stir processing”, Wear 278-279, 41-47 (2012).
  • [16] A. Devaraju, A. Kumar, A. Kumaraswamy, and B. Kotiveerachari, “Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminium alloy 6061-T6 based surface hybrid composites produced via friction stir processing”, Materials and Design 51, 331-341 (2013).
  • [17] Y.Q. Wang, A.M. Afsar, J.H. Jang, K.S. Han, and J.I. Song, “Room temperature dry and lubricant wear behaviors of Al2O3/ SiCp/Al hybrid metal matrix composites”, Wear 268 (7-8), 863-870 (2010).
  • [18] N. Selvakumar and T. Ramkumar, “Effects of high temperature wear behaviour of sintered Ti-6Al-4V reinforced with nano B4C particle”, Transactions of the Indian Institute of Metals 69 (6), 1267‒1276 (2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-756905dd-5bb1-4c6a-8d4f-8ee430698877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.