PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stiffness Analysis of the External Fixation System at Axial Pressure Load

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper analyzes the stiffness of the Orthofix external fixation system at axial pressure load, applied to the lower leg in case of an unstable fracture. Based on the actual construction of the Orthofix fixator, its 3D model was formed, and then a structural analysis was performed in the CATIA V5 software system. The aim of this paper is to investigate the mechanical properties of Orthofix fixator. FEM analysis of the fixator revealed displacements at characteristic points of the structure and fractures. During the FEM analysis, it is possible to change the load values, all with the aim of obtaining the best possible information about the behavior of the fixator during installation and use by the patient. Based on the results obtained from the FEM analysis, it can be concluded that the Orthofix fixative shows very good stiffness, but also that it can be improved by using newer materials, such as composite or some alloys of titanium and aluminum.
Twórcy
autor
  • Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
  • Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
  • Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
  • Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
  • Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
Bibliografia
  • 1. Koo T.K.K., Chao E.Y.S., Mak A.F.T. Fixation Stiffness of Dynafix Unilateral External Fixator in Neutral and Non-neutral Configurations. Bio-Medical Materials and Engineering. 2005; 15: 433–444.
  • 2. Pervan N., Mešić E., Muminović A.J., Delić M., Muratović E., Trobradović M., Hadžiabdić V. Biomechanical Performance Analysis of the Mono-lateral External Fixation Devices with Steel and Composite Material Frames under the Impact of Axial Load. Applied Sciences. 2022; 12(2): 722.
  • 3. Koo T.K.K., Kim Y.H., Choi D.B., Hua K.G., Lim J., Inoue N., Chao E.Y.S. Stiffness Analysis of the Dynafix External Fixator System. Proceedings of the Summer Bioengineering Conference, Florida 2003, 1227–1234.
  • 4. Drijber F.L.I.P., Finlay J.B., Moroz T.K., Rorabeck C.H. Source of the Slippage in the Universal Joints of the Hoffmann External Fixator. Med. Biol. Eng. Comput. 1990; 28: 8–14.
  • 5. Jasinska-Choromanska D., Sadzynski I. Monitoring Technique of Bone Fracture Healing Using External Fixators. Eng. Trans. 2003; 51: 255–265.
  • 6. Vossoughi J., Youm Y., Bosse M., Burgess A.R. and Poka, A. Structural Stiffness of the Hoffmann Simple Anterior Tibial External Fixation Frame. Ann. Biomed. Eng. 1989; 17: 127–141.
  • 7. Mešić E., Pervan N., Muminović A.J., Muminović A., Čolić M. Development of Knowledge-Based Engineering System for Structural Size Optimization of External Fixation Device. Applied Sciences. 2021; 11(22): 10775.
  • 8. Grubor P., Mitković M., Tanjga, R. Značaj biomehaničkih karakteristika spoljnjeg fiksatora u liječenju kominutivnih preloma i koštanih defekata. Acta Fac. Med. Naiss. 2002; 19: 211–221.
  • 9. Mesic E., Pervan N., Repcic N., Muminovic A. Research of Influential Constructional Parameters on the Stability of the Fixator Sarafix. In: Annals of DAAAM for 2012 & Proceedings of the 23 rd International DAAAM Symposium, Vienna, Austria 2012, 561–564.
  • 10. Pervan N., Mesic E., Colic M., Avdic, V. Stiffness analysis of the sarafix external fixator of composite materials. International Journal of Engineering & Technology. 2016; 5(1): 20–24.
  • 11. Yilmaz E., Belhan O., Karakurt L., Arslan N., Serin, E. Mechanical performance of hybrid Ilizarov external fixator in comparison with Ilizarov circular external fixator. Clin. Biomech. 2003; 18: 518–522.
  • 12. Behrens F. A primer of fixator devices and configurations. Clin Orthop Relat Res. 1989; (241): 5–14.
  • 13. Gausepohl T., Pennig D., Mader K. Principles of external fixation and supplementary techniques in distal radius fractures. Injury. 2000; 31(1): 56–70.
  • 14. Jasinska-Choromanska D., Sadzynski I., Monitoring Technique of Bone Fracture Healing Using External Fixators, 39th International Conference, Experimental Stress Analysis, 2001.
  • 15. Remiger A.R. Mechanical Properties of the Pinless External Fixator on Human Tibiae. Br. J. Accid. Surg. Inj. 1992; 23: 28–43.
  • 16. Oh J.K., Lee J.J., Jung D.K., Kim B.J., Oh C.W. Hybrid External Fixation of Distal Tibial Fractures: New Strategy to Place Pins and Wires without Penetrating the Anterior Compartment. Arch. Orthop. Trauma Surg. 2004; 124: 542–546.
  • 17. Lopes V.M., Neto M.A., Amaro A.M., Roseiro L.M., Paulino M.F. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels. Med. Eng. Phys. 2017;
  • 46: 96–109. 18. Pervan N., Mesic E., Colic M., Avdic V. Stiffness Analysis of the Sarafix External Fixator based on Stainless Steel and Composite Material. TEM Journal. 2015; 4(4): 366–372.
  • 19. Chao E.Y., Hein T.J. Mechanical performance of the standard Orthofix external fixator. Orthopedics. 1988; 11(7): 1057–1069.
  • 20. Dehankar R., Langde A.M. Finite element approach used on the human tibia: a study on spiral fractures. Journal of Long Term Effects of Medical Implants. 2009; 19(4): 313–321.
  • 21. Cordey J., Borgeaud M., Perren S.M. Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws friction between plate and bone. Injury. 2000, 31 (3): C21–8.
  • 22. Đozić Š., Shetty A.A., Hansen U., James K.D. Biomechanical Test Results of the Sarafix – External Fixator, Imperial College, London, 2004.
  • 23. Li J., Zhao X., Hu X., et al. A theoretical analysis and finite element simulation of fixator-bone system stiffness on healing progression, J. Appl. Biomater. Funct. Mater. 2018; 16: 115–125.
  • 24. Mešić E., Muminović A., Čolić M., Petrović M., Pervan, N. Development and Experimental Verification of a Generative CAD/FEM Model of an External Fixation Device. Tehnicki glasnik-Technical Journal. 2020; 14(1): 1–6.
  • 25. Pervan N., Mesic E., Colic, M. Stress analysis of external fixator based on stainless steel and composite material. International Journal of Mechanical Engineering & Technology. 2017; 8(1): 189–199.
  • 26. Mešić E., Muminović A., Čolić M., Petrović M., Pervan, N. Structural Size Optimization of External Fixation Device. Advances in Science and Technology. Research Journal. 2020; 14(2): 233–240.
  • 27. Mešić E., Avdić V., Pervan N., Repčić, N. Finite Element Analysis and Experimental Testing of Stiffness of the Sarafix External Fixator. Procedia Engineering. 2015; 100: 1598–1607.
  • 28. Mesic E., Avdic V., Pervan N. Numerical and experimental stress analysis of an external fixation system. Folia Medica Facultatis Medicinae Universitatis Saraeviensis. 2015; 50(1): 52–58.
  • 29. Mesic E., Avdic V., Pervan N., Muminovic, A. A new Proposal on Analysis of the Interfragmentary Displacements in the Fracture Gap. TEM Journal. 2015; 4(3): 270–275.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7566ebd7-174c-406c-995a-030a1e25feb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.