Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The underlying aim of presented article is to determine the optimal location and sizes of the air gaps inside a multi-slot coaxial antenna with 50-ohm feed based on the S11-parameter characteristics of microwave applicator to get the best antenna impedance matching to the treated tissue. The next step is the selection of the limit levels of the antenna input power, for which temperature of the tissue do not exceed known therapeutic elevations for microwave therapies at hyperthermic and ablation temperatures. The proposed approach provides a relatively simple method for optimization of the location and size of slots in the antenna structure. The proper choice of limit values of total antenna input power enables appropriate adjustment of temperature of the target tissue to preserve optimal cancer treatment.
Wydawca
Czasopismo
Rocznik
Tom
Strony
78--93
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] Rossmann C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng 2014;42(6):467–92. http://dx.doi.org/10.1615/CritRevBiomedEng.2015012486.
- [2] Kurgan E, Gas P. Estimation of temperature distribution inside tissues in external RF hyperthermia. Przeglad Elektrotechniczny 2010;86(1):100–2.
- [3] Paruch M. Cancer ablation during RF hyperthermia using internal electrode. In: Kleiber M, Burczynski T, Wilde K, Gorski J, Winkelmann K, Smakosz L, editors. Advances in mechanics: theoretical, computational and interdisciplinary issues. CRC Press; 2016. p. 455–8. Chapter 94.
- [4] Luyen H, Hagness SC, Behdad N. A Balun-free helical antenna for minimally invasive microwave ablation. IEEE T Antenn Propag 2015;63(3):959–65.
- [5] Curto S, Taj-Eldin M, Fairchild D, Prakash P. Microwave ablation at 915 MHz vs 2.45 GHz: a theoretical and experimental investigation. Med Phys 2015;42(11):6152–61.
- [6] Gas P. Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad Elektrotechniczny 2011;87(12b):37–40. Available at: http://pe.org.pl/articles/2011/12b/11.pdf.
- [7] Hernandez JI, Cepeda MF, Valdes F, Guerrero GD. Microwave ablation: state-of-the-art review. OncoTargets Therapy 2015;8:1627–32. http://dx.doi.org/10.2147/OTT.S81734.
- [8] Ito K, Saito K, Taniguchi T, Yoshimura H. Temperature distribution in and around array applicator for interstitial microwave hyperthermia combined with interstitial radiation therapy. Proceedings of the 27th URSI General Assembly; 2002. p. 1–4.
- [9] Zafar T, Zafar J, Zafar H. Development and microwave analysis of slot antennas for localized hyperthermia treatment of hepatocellular liver tumor. Australasian Phys Eng Sci Med 2014;37(4):673–9.
- [10] Gas P. Multi-frequency analysis for interstitial microwave hyperthermia using multi-slot coaxial antenna. Journal of Electrical Engineering-Elektrotechnicky Casopis 2015;66 (1):26–33. http://dx.doi.org/10.1515/jee-2015-0004, https://www-1scopus-1com-1scopus.wbg2.bg.agh.edu.pl/ record/display.uri?origin=recordpage&zone= relatedDocuments&eid=2-s2.0-85000666352&citeCnt=0& noHighlight=false&sort=plf-f& src=s&st1=gas%2c+p&st2= &sid=99C86CCF004303F6A18315F3FED7B57B. wsnAw8kcdt7IPYLO0V48gA%3a20&sot=b&sdt=b&sl=19&s= AUTHOR-NAME%28gas%2c+p%29&relpos=0.
- [11] Rubio MFJC, Lopez GDG, Perezgasga FV, Garcia FF, Hernandez AV, Salas LL. Computer modeling for microwave ablation in breast cancer using a coaxial slot antenna. Int J Thermophys 2015;36(10):2687–704. http://dx.doi.org/10.1007/s10765-015-1931-2.
- [12] Wang T, Zhao G, Qiu B. Theoretical evaluation of the treatment effectiveness of a novel coaxial multi-slot antenna for conformal microwave ablation of tumors. Int J Heat Mass Trans 2015;90:81–91.
- [13] Converse M, Bond EJ, Veen BD, Hagness C. A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment. IEEE Trans Microwave Theory Techn 2006;54(5):2169–80.
- [14] Stang J, Haynes M, Carson P, Moghaddam M. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans Biomed Eng 2012;59(9):2431–8.
- [15] Kudzia R, Nahajowski D, Kukielka AM, Dabrowski T, Dybek D, Brandys P, et al. Does microwave interstitial hyperthermia prior to high-dose-rate brachytherapy change prostate volume or therapy plan parameters? Int J Hyperthermia 2015;31(5):568–73.
- [16] Gas P, Miaskowski A. Specifying the ferrofluid parameters important from the viewpoint of Magnetic Fluid Hyperthermia. 2015 Selected Problems of Electrical Engineering and Electronics (WZEE); 2015. pp. 1–6. art. no. 7394040. http://dx.doi.org/10.1109/WZEE.2015.7394040, https://www-1scopus-1com-1scopus.wbg2.bg.agh.edu.pl/ record/display.uri?eid=2-s2.0-84963717693&origin= resultslist&sort=plf-f&src=s&st1=gas%2c+p&st2=& sid=99C86CCF004303F6A18315F3FED7B57B. wsnAw8kcdt7IPYLO0V48gA% 3a20&sot=b&sdt=b&sl=19&s=AUTHOR-NAME%28gas%2c+p %29&relpos=4&citeCnt=4&searchTerm=.
- [17] Varon LAB, Orlande HRB, Elicabe GE. Combined parameter and state estimation in the radio frequency hyperthermia treatment of cancer. Numerical Heat Transfer A: Appl 2016;70(6):581–94.
- [18] Prakash P, Deng G, Converse MC, Webster JG, Mahvi DM, Ferris MC. Design optimization of a robust sleeve antenna for hepatic microwave ablation. Phys Med Biol 2008;53 (4):1057–69.
- [19] Bertram JM, Yang D, Converse MC, Webster JG, Mahvi DM. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. Biomed Eng Online 2006;5(1):1–9. http://dx.doi.org/10.1186/1475-925X-5-15. art. no. 15.
- [20] Jiao T, Wang H, Zhang Y, Yu X, Xue H, Lv H, et al. A coaxial-slot antenna for invasive microwave hyperthermia therapy. J Biomed Sci Eng 2012;5(4):198–202. art. ID: 18514.
- [21] Gas P. Study on interstitial microwave hyperthermia with multi-slot coaxial antenna. Revue Roumaine des Sciences Techniques-Serie Electrotechnique et Energetique 2014;59 (2):215–24. Available at: http://revue.elth.pub.ro/index.php? action=details&id=453.
- [22] Wang JH, Mei KK. Theory and analysis of leaky coaxial cables with periodic slots. IEEE T Antenn Propag 2001;49 (12):1723–32. http://dx.doi.org/10.1109/8.982452.
- [23] Rhein S, Oesterle Ch, Graichen K. Optimal trajectory planning for interstitial hyperthermia processes. IFAC PapersOnLine 2016;49(8):136–41.
- [24] Gas P. Determination of the optimal multi-slot coaxial antenna sizes based on the microwave antenna reflection coefficient characteristics. 2015 Selected Problems of Electrical Engineering and Electronics (WZEE); 2015. pp. 1–4. art. no. 7394015, http://dx.doi.org/10.1109/WZEE.2015.7394015, https://www-1scopus-1com-1scopus.wbg2.bg.agh.edu.pl/ record/display.uri?eid=2-s2.0-84963743695&origin= resultslist&sort=plf-f&src=s&st1=gas%2c +p&st2=&sid=99C86CCF004303F6A18315F3FED7B57B. wsnAw8kcdt7IPYLO0V48gA% 3a20&sot=b&sdt=b&sl=19&s=AUTHOR-NAME%28gas%2c+p %29&relpos=3&citeCnt=0&searchTerm=.
- [25] Gas P. The S11-parameter analysis of multi-slot coaxial antenna with periodic slots. 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE); 2016. pp. 1–4.
- [26] Rubio MFJC, Hernandez AV, Salas LL, Avila-Navarro E, Navarro EA. Coaxial slot antenna design for microwave hyperthermia using finite-difference time-domain and finite element method. Open Nanomed J 2011;3:2–9. http://dx.doi.org/10.2174/1875933501103010002.
- [27] Saito K, Taniguchi T, Yoshimura H, Ito K. Estimation of SAR distribution of a tip-split array applicator for microwave coagulation therapy using the finite element method. IEICE T Electron 2001;E84.C(7):948–54.
- [28] Keangin P, Rattanadecho P. Analysis of heat transport on local thermal non-equilibrium in porous liver during microwave ablation. Int J Heat Mass Trans 2013;67:46–60.
- [29] Morega M, Morega AM, Sandoiu AM. Sensitivity to parameters variation in numerical simulation of microwave thermotherapy. 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE); 2015. pp. 313–6.
- [30] Komarov VV. Numerical study and optimization of interstitial antennas for microwave ablation therapy. Eur Phys J Appl Phys 2014;68(1):1–8. http://dx.doi.org/10.1051/epjap/2014140175. art. no. 10901.
- [31] Nowakowska H, Jasinski M, Debicki PS, Mizeraczyk J. Numerical analysis and optimization of power coupling efficiency in waveguide-based microwave plasma source. IEEE Trans Plasma Sci 2011;39(10):1935–42.
- [32] Pawluk K. Repetency of the electromagnetic wave and its deficient. Prace Instytutu Elektrotechniki 2013;262:5–16 (in Polish).
- [33] Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 1996;41(11):2271–93.
- [34] Surducan E, Surducan V. 2.5 GHz Slot Antenna Array - Prototype Applicator for Heating Applications. 2014 International conference on information science, electronics and electrical engineering (ISEEE); 2014. pp. 67–70.
- [35] Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1998;85(1):5–34.
- [36] Faktorova D, Istenikova K. Modelling of scattering parameters in biological tissues. Przeglad Elektrotechniczny 2011;87(5):34–6.
- [37] Gas P, Czosnowski J. Calculation of the coaxial-slot antenna characteristics used for the interstitial microwave hyperthermia treatment. Przeglad Elektrotechniczny 2014;90(3):176–8. http://dx.doi.org/10.12915/pe.2014.03.39.
- [38] Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin MC, Payne D, et al. IT'IS Database for thermal and electromagnetic parameters of biological tissues, Version 3.0, September 1st; 2015, Available at: www.itis.ethz.ch/database.
- [39] McIntosh RL, Anderson V. Erratum: ‘‘a comprehensive tissue properties database provided for the thermal assessment of a human at rest’’. Biophys Rev Lett 2013;8(1&2):99–100.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7558236c-1bb7-4ea1-8fd9-2d49b188ae32