PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Original System for Controlling the Speed of Movement of Pneumatic Drives in Rehabilitation Devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the article is to present an original method of speed control and simultaneous stroke of the piston rods of two pneumatic cylinders using potentiometric position transducers, pneumatic solenoid valves, properly scaled throttle-check valves, solenoid valves and a microcontroller with power modules for solenoid valves. Initial experimental studies of the control system for simultaneous displacement of two piston rods of pneumatic actuators were carried out. The purpose of the research was to obtain the characteristics of the displacement of the extension of two pneumatic drives. The obtained results were analyzed. The results of the measurements confirmed the possibility of applying the presented control to rehabilitation devices for passive exercises of the lower extremities. The advantage of the proposed control system is its reaction speed, which is a response to changes in operating conditions of a given actuator, such as: external disturbances, own resistance of the controlled device, frictional resistance or movement caused by the patient exercising on the rehabilitation device moved by these actuators.
Twórcy
  • Department of Aerospace Engineering, The Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • College of Natural Sciences, Institute of Materials Engineering, University of Rzeszow, ul. Pigonia 1, 35-310 Rzeszów, Poland
  • Department of Aerospace Engineering, The Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Graduated from the University of Rzeszow, Aleja Tadeusza Rejtana 16C, 35-310 Rzeszów, Poland
Bibliografia
  • 1. Sughashini K.R et al. A pneumatic robot arm for sorting of objects with chromatic sensor module. Materials Today: Proceedings 2021; 45: 6364–6368.
  • 2. Praveena B.A. et al. Design and Fabrication of a Scaled Down Self Load Pneumatic Modern Trailer. In: IOP Conference Series: Materials Science and Engineering 2021; 1013(1): 1–8.
  • 3. Yokota M., Takaiwa M. Gait Rehabilitation System Using a Non-Wearing Type Pneumatic Power Assist Device. Journal of Robotics and Mechatronics 2021; 33(4): 927–934.
  • 4. Xu Y., Qin Y., Han J. Hysteresis Compensation of an Elbow Joint Rehabilitation Robot Featuring Flexible Pneumatic Artificial Muscle Actuation. In: IEEE International Conference on Real-time Computing and Robotics (RCAR), 2021, 227–232.
  • 5. Azlan N. Z.et al. Soft Pneumatic Exoskeleton for Wrist and Thumb Rehabilitation. International Journal of Robotics and Control Systems 2021; 1(4): 440–452.
  • 6. Dao D. M. et al. Study on the transient response of lower limb rehabilitation actuator using the pneumatic cylinder. Journal of Mechatronics, Electrical Power, and Vehicular Technology 2018; 9(2): 65–72.
  • 7. Żyłka M.I., Szczerba Z., Szczerba K. Experimental Research on the Velocity of Two Pneumatic Drives with an Element for Concurrent Motion. Advances in Science and Technology Research Journal 2022; 16(2): 81–88.
  • 8. Stilli A. et al. AirExGlove—A novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients. In: 2018 IEEE International Conference on soft robotics (RoboSoft), IEEE 2018; 579–584.
  • 9. Magnetti G.S. et al. Feasibility study of a passive pneumatic exoskeleton for upper limbs based on a mckibben artificial muscle. In: International Conference on Robotics in Alpe-Adria Danube Region. Springer, Cham 2021; 208–217.
  • 10. Żyłka M., Żyłka W. Overview of solutions used in rehabilitation devices using muscles and pneumatic actuators. Science, Technology and Innovation 2020; 10(3): 15–22.
  • 11. Mendoza M.J., Gollob S.D., Lavado D., Koo B.H.B., Cruz S., Roche E.T., Vela E.A. A Vacuum-Powered Artificial Muscle Designed for Infant Rehabilitation. Micromachines 2021; 12(8): 971.
  • 12. Gudapati N. et al. Design and Control of a Low-Cost EMG-Based Soft Robotic Ankle-Foot Orthosis for Foot Drop Rehabilitation. In: Machines, Mechanism and Robotics. Springer, Singapore 2022; 1367–1382.
  • 13. Goergen R. et al. Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation. In: IEEE 16th International Conference on Rehabilitation Robotics (ICORR). IEEE 2019; 187–192.
  • 14. Jamian S., Salim S.N.S., Kamarudin M. N., Zainon M., Mohamad M.S., Abdullah L., Hanafiah M.A.M. Review on controller design in pneumatic actuator drive system. Telkomnika 2020;18(1): 332–342.
  • 15. Inoue Y. et al. Application to Pneumatic Servo System in Bilateral Control Based on Wave Variable. IEEE/SICE International Symposium on System Integration (SII). IEEE; 2020: 460–464.
  • 16. Jiménez M., Kurmyshev E., Castañeda C.E., Experimental study of doubleacting pneumatic cylinder. Experimental Techniques 2020; 44(3): 355–367.
  • 17. Mohan B., Muthuramalingam T.A. Review on recent research trends in servo pneumatic positioning systems. Precision Engineering 2017; 49: 481–492.
  • 18. Takosoglu J., Dindorf R., Łaski P., Woś P. Positioning of the electropneumatic servo drive with direct measurement of the displacement and speed of the actuator piston, Acta Mechanica et Automatica 2010; 4(1): 86–91.
  • 19. Węsierski Ł.N. Pneumatics. Elements and layouts.Wyd. UR, 2015.
  • 20. Takosoglu J., Łaski P., Błasiak S. et al A valve for controlling fluid drives, especially pneumatic actuator drives and a valve control system for fluid drives, PL 221414, 2015.
  • 21. Żyłka M., Szczerba Z. An element that synchronizes the work of two actuators. Utility model number W.126971, 2020.
  • 22. Zhao T., Huang D., October. Research and Implementation of Constant Pressure Control with Electro-pneumatic Proportional Valve. In Journal of Physics: Conference Series 2020; 1626(1).
  • 23. Qi H., Bone G.M., Zhang Y. Position Control of Pneumatic Actuators Using Three-Mode Discrete-Valued Model Predictive Control. Actuators 2019; 8(3): 56
  • 24. D’souza J. et al. Barriers leading to increased disability in neurologically challenged populations during COVID-19 pandemic: a scoping review. Disability and Rehabilitation 2021; 1–14.
  • 25. Who. Rapid assessment of service delivery for NCDs during COVID-19. 2020. Accessed September 29, 2020. http://www.emro.who.int/non-communicable diseases/publications/rapid-assessment-of-service-delivery-for-ncds-during-covid19.html?ver=2 (accessed 13 March 2022)
  • 26. Rao, P.T. A paradigm shift in the delivery of physical therapy services for children with disabilities in the time of the COVID-19 pandemic. Physical therapy 2021; 101(1).
  • 27. Cieloszczyk A., Lewko A., Sliwka A., Wloch T., Pyszora A. Coronavirus: SARS-Cov-2: Recommendations for physiotherapy of adult patients with COVID-19, 2020.
  • 28. Jang M., Shin M., Shin Y., Pulmonary and Physical Rehabilitation in Critically Ill Patients. Acute Crit Care 2019; 34(1): 1–13.
  • 29. Sagarra-Romero L., Viñas-Barros A. COVID-19:Short and long-term effects of hospitalization on muscular weakness in the elderly. International journal of environmental research and public health 2020; 17(23): 8715.
  • 30. Bloomfield S. Changes in musculoskeletal structure and function with prolonged bed rest. Med. Sci. Sports Exerc. 1997; 29(2): 197–206.
  • 31. Doering T.J., Resch K.L., Steuernagel B., Brix J., Schneider B., Fischer G.C. Passive and active exercises increase cerebral blood flow velocity in young, healthy individuals. Am J Phys Med Rehabil. 1998; 77(6): 490–493.
  • 32. Pincherle A., Jöhr J., Pancini L., Leocani L., Vecchia L.D., Ryvlin P., Schiff N.D., Diserens K. Intensive Care Admission and Early Neuro-Rehabilitation. Lessons for COVID-19. Front. Neurol. 2020; 11: 880.
  • 33. Dinçer C. Safe Rehabilitation Practices For COVID-19 Patients on Mechanical Ventilators in the Intensive Care Units. Batı Karadeniz Tıp Dergisi 2020; 4(3): 114–121.
  • 34. Kiekens C., Boldrini P., Andreoli A., Avesani R., Gamna F., Grandi M., Lombardi F., Lusuardi M., Molteni F., Perboni A., Negrini S. Rehabilitation and respiratory management in the acute and early post-acute phase. Instant paper from the field on rehabilitation answers to the COVID-19 emergency. Eur J Phys Rehabil Med. 2020; 56(3): 323–326.
  • 35. Dantas L.O., Barreto R.P.G., Ferreira C.H.J. Digital physical therapy in the COVID-19 pandemic. Brazilian J Phys Ther. 2020; 24(5): 381.
  • 36. Lee A.C. COVID-19 and the advancement of digital physical therapist practice and telehealth. Phys. Ther. 2020; 100(7): 1054–1057.
  • 37. Rao P.T., Paradigm Shift in the Delivery of Physical Therapy Services for Children With Disabilities in the Time of the COVID-19 Pandemic. Phys Ther. 2021; 101(1).
  • 38. Żyłka M., Biskup M. System for controlling the speed and concurrent extension of the piston rods of two pneumatic cylinders and the method of controlling the speed and simultaneous extension of the piston rods of two pneumatic cylinders, PL 240501, 2022.
  • 39. Żyłka M., Kucaba-Piętal A. Device for rehabilitation of lower limbs, PL 233326, 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75525069-ce98-44d0-aeb2-45366981e58a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.