PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Approximate analytical solution to the Cattaneo heat conduction model with various laser sources

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present manuscript investigates the role being played by various laser short heating sources in a conduction process of a metallic substrate. The Cattaneo heat conduction model is considered in favour of its finiteness of conduction speed. The analytical solutions for the temperature fields are determined via the application of the Laplace integral transform. Finally, we sought a numerical Laplace inversion scheme where the analytical inversion failed and graphically examined the significance of the heating parameters on the temperature fields.
Rocznik
Strony
67--78
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Mathematics, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria
Bibliografia
  • [1] Carslaw, H., & Jeager, J.C. (1959). The Conduction of Heat in Solids. 2nd edition, Oxford: Clarendon Press.
  • [2] Qi, H.T., Xu., H.Y., & Guo, X.W. (2013). The Cattaneo-type time fractional heat conduction equation for laser heating. Computers and Mathematics with Applications, 66, 824-831.
  • [3] Al-Duhaim, H.R., Yilbas, B.S., & Zaman, F.D. (2016). Determination of temperature distribution and thermal stress for the hyperbolic heat conduction equation due to laser short pulse heating.Lasers in Engineering, 35, 275-301.
  • [4] Al-Duhaim, H.R., Yilbas, B.S., & Zaman, F.D. (2017). Hyperbolic nature of heat conduction for short pulse laser irradiation of solid surfaces: analytical solution for the thermal stress field. Lasers in Engineering, 36, 331-353.
  • [5] Yilbas, B.S., Akhtar, S., & Shuja, S.Z. (2013). Laser Forming and Welding. Springer.
  • [6] Yilbas, B.S., Al-Dweik, A.Y., & Bin Mansour, S. (2011). Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating. Physica B, 406, 1550-1555.
  • [7] Nuruddeen, R.I., & Zaman, F.D. (2016). Heat conduction of a circular hollow cylinder amidst mixed boundary conditions. International Journal of Scientic Engineering and Technology, 5(1), 18-22.
  • [8] Nuruddeen, R.I., & Zaman, F.D. (2016). Temperature distribution in a circular cylinder with general mixed boundary conditions. Journal of Multidisciplinary Engineering Science and Technology, 3(1), 3653-3658.
  • [9] Al-Duhaim, H.R., Nuruddeen, R.I., & Zaman, F.D. (2015). Thermal stress in a half-space with mixed boundary conditions due to time dependent heat source. IOSR Journal of Mathematics, 11(6), 19-25.
  • [10] Yan, S.P., Zhong, W.P., & Yang, X.J. (2016). A novel series method for fractional diffusion equation within Caputo fractional derivative. Thermal Science, 20(3), S695-S699.
  • [11] Al-Khaled, K., & Momani, S. (2005). An approximate solution for a fractional diffusion-wave equation using the decomposition method. Applied Mathematics and Computation, 2(15), 473-483.
  • [12] Ray, S.S., & Bera, R.K. (2006). Analytical solution of a fractional diffusion equation by Adomian decomposition method. Applied Mathematics and Computation, 174, 329-336.
  • [13] Bokhari, A.H., et al. (2009). Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties. Mathematical Problems in Engineering.
  • [14] Bokhari, A.H., et al. (2009). Solution of heat equation with nonlocal boundary conditions.International Journal of Mathematics and Computation, 3(J09), 100-113.
  • [15] Nuruddeen, R.I., Zaman, F.D., & Zakariya, Y.F. (2019). Analysing the fractional heat diffusion equation solution in comparison with the new fractional derivative by decomposition method. Malaya Journal of Matematik, 7(2), 213-222.
  • [16] Nuruddeen, R.I., & Garba, B.D. (2018). Analytical technique for (2+1) fractional diffusion equation with nonlocal boundary conditions. Open Journal of Mathematics Science, 2(1), 287-300.
  • [17] Al Qarni, A., et al. (2019). Bright optical solitons for Lakshmanan-Porsezian-Daniel model with spatio-temporal dispersion by improved Adomian decomposition method. Optik, 181, 891-897.
  • [18] Nuruddeen, R.I., et al. (2018). A review of the integral transforms-based decomposition methods and their applications in solving nonlinear PDEs. Palestine Journal od Mathematics, 7, 262-280.
  • [19] Ahmad, A., et al. (2008). Symmetry classifications and reductions of some classes of (2+1)-nonlinear heat equation. Journal of Mathematical Analysis and Applications, 339(1), 175-181.
  • [20] Masood, K., & Zaman, F.D. (2004). Initial inverse problem in a two-layer heat conduction model. The Arabian Journal for Science and Engineering, 29(1B), 1-12.
  • [21] Laplace, P.S. (2820). Theorie Analytique des Probabilities. Paris: Lerch.
  • [22] Debnath, L., & Bhatta, D. (2007). Integral Transforms and their Applications. 2nd ed. Boca Raton: Taylor & Francis Group, LLC.
  • [23] Kukla, S., & Siedlecka, U. (2020). Time-fractional heat conduction in a finite composite cylinder with heat source. Journal of Applied Mathematics and Computational Mechanics, 19(2), 85-94.
  • [24] Jan, R., & Jan, A. (2017). MSGDTM for solution of fractional order dengue disease model. International Journal of Science and Research, 6(3), 1140-1144.
  • [25] Alharbi, F.M., et al. (2021). Bioconvection due to gyrotactic microorganisms in couple stress hybrid nanofluid laminar mixed convection incompressible flow with magnetic nanoparticles and chemical reaction as carrier for targeted drug delivery through porous stretching sheet. Molecules, 26(13) 3954.
  • [26] Jan, R., et al. (2021). The investigation of the fractional-view dynamics of helmholtz equations within Caputo Operator. CMC-Computers Materials & Continua, 68(3), 3185-3201.
  • [27] Abate, J., & Valkó, P.P. (2004). Multi-precision Laplace transform inversion. Numerical Methods in Engineering, 60(5), 979-993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7550760e-7d08-4c34-9001-3ffa460d8a10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.