Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Mn-Zn ferrite powders prepared by high energy ball milling were heat-treated, subsequently compacted and sintered by spark plasma sintering (SPS). Based on the observation of microstructure, the characteristics of samples after SPS were investigated and compared with ones after conventional sintering. The size of initial powders was approximately 650 nm and decreased to 230 nm after milling at 300 rpm for 3 h. After heat treatment at 973 K for 1 h, the milled powders became larger to approximately 550 nm in size again and the peaks of Mn2 O3 disappeared in XRD patterns. In the samples after SPS, the Fe2 O3 and MnZnFe2 O4 phases decomposed at the higher temperatures than 1173 K and 1373 K, respectively, while only MnZnFe2 O4 phase was detected in the samples conventionally sintered at 1273~1673 K. As the sintering temperature increased, the relative density after SPS increased more quickly than that after conventional sintering. In particular, it reached approximately 99% after SPS at 1473 K.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
565--569
Opis fizyczny
Bibliogr. 16 poz., fot., rys.
Twórcy
autor
- Korea Aerospace University, Department of Materials Engineering, Goyang 10540, Korea
autor
- Korea Aerospace University, Department of Materials Engineering, Goyang 10540, Korea
autor
- Korea Aerospace University, Department of Materials Engineering, Goyang 10540, Korea
Bibliografia
- [1] P. Hu, H. Yang, D. Pan, H. Wang, J. Tian, S. Zhang, X. Wang, A. A. Volinsky, J. Magn. Magn. Mater. 322, 173-177 (2010).
- [2] S. K. Pradhan, S. Bid, M. Gateshki, V. Petkov, J. Mater. Chem. Phys. 93, 224-230 (2005).
- [3] S. Dasgupta, J. Das, J. Eckert, I. Manna, J. Magn. Magn. Mater. 306, 9-15 (2006).
- [4] S. J. Park, Y. S. Song, K. S. Nam, S. Y. Chang, J. Kor. Powd. Met. Inst. 19, 122-126 (2012).
- [5] S. M. Hong, E. K. Park, K. Y. Kim, J. J. Park, M. K. Lee, C. K. Rhee, J. K. Lee, Y. S. Kwon, J. Kor. Powd. Met. Inst. 19, 32-39 (2012).
- [6] H. P. Klug, L. E. Alexander, Joohn Wiley and Sons, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York 1997.
- [7] L. Gao, H. Miyamoto, J. Inorg. Mater. 12, 129-133 (1997).
- [8] M. Tokita, J. Soc. Powder Technol. 30, 790-804 (1993).
- [9] T. Takeuchi, M. Tabuchi, H. Kageyama, Y. Suyama, J. Am. Ceram. Soc. 82, 939-943 (1999).
- [10] Z. J. Shen, M. Johnsson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85, 1921-1927 (2002).
- [11] G. D. Zhan, J. D. Kuntz, J. L. Wan, A. K. Mukherjee, Nat. Mat. 2, 38-42 (2003).
- [12] S. I. Cha, S. H. Hong, B. K. Kim, Mater. Sci. Eng. A 351, 31-38 (2003).
- [13] M. Yue, J. X. Zhang, Y. F. Xiao, G. P. Wang, T. Li, IEEE Trans. Magn. 39, 3551-3553 (2003).
- [14] S. Y. Chang, S. T. Oh, M. J. Suk, C. S. Hong, J. Kor. Powd. Met. Inst. 21, 97-101 (2014).
- [15] L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, B. Zou, S. Feng, J. Magn. Magn. Mater. 301, 445-451 (2006).
- [16] D. J. Kim et al., Korean Powder Metallurgy Inst, Powder Metallurgy & Particulate Materials Processing, Seoul 2010.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-754e550b-bd02-4e2c-b0df-dd955bb6a087