PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inhomogeneous GaInNAs quantum wells: their properties and utilization for improving of p-i-n and p-n junction photodetectors

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical study of electronic structures and optical properties of GaInNAs/GaAs quantum wells has been performed. The inhomogeneous distributions of indium and nitrogen atoms along the growth direction were discussed as the main factors having significant impact on the QWs absorption efficiency. The study was performed by applying the band anticrossing model combined with the envelope function formalism and based on the material parameters which can be found in the literature. Indeed, the electronic band structure of 15 nm thick uniform Ga0.7In0.3N0.02As0.98/GaAs QW was computed together with electronic structures of several types of inhomogeneous QWs, with the same total content of In and N atoms. It was found that presented inhomogeneities lead to significant quantum wells potential modifications and thus to spatial separation of the electrons and holes wave functions. On the other hand, these changes have a significant impact on the absorption coefficient behavior. This influence has been studied on the basis of simulated photoreflectance spectra, which probe the absorption transitions between QW energy subbands. The electronic structure of inhomogeneous QWs under the influence of electric field has also been studied. Two different senses of electric field vector (of p-i-n and n-i-p junctions) have been considered and thus, the improvement of such types of QWs-photodetectors based on inhomogeneous GaInNAs QWs has been proposed.
Wydawca
Rocznik
Strony
893--902
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technolgy, Janiszewskiego 11/17, 50-372 Wroclaw, Poland
Bibliografia
  • [1] LANGER F., PERL S., HÖFLING S., KAMP M., Appl. Phys. Lett., 106 (2015), 233902.
  • [2] BALKAN N., EROL A., SARCAN F., AL-GHURAIBAWI L.F.F., NORDIN M.S., Superlattice Microst., 86 (2015), 467.
  • [3] SARCAN F., NORDIN M.S., KURUOGLU F., EROL A., VICKERS A.J., Superlattice Microst., 102 (2017), 27.
  • [4] BISPING D., HÖFLING S, PUCICKI D., FISCHER M., FORCHEL A., Electron. Lett., 44 (2008), 737.
  • [5] BISPING D., PUCICKI D., HÖFLING S., HABERMANN S., EWERT D., FISCHER M., KOETH J., FORCHEL A., IEEE Photonic Tech. L., 20 (2008), 1766.
  • [6] VURGAFTMAN I., MEYER J.R., J. Appl. Phys., 94 (2003), 3675.
  • [7] TIXIER S., WEBSTER S.E., YOUNG E.C., TIEDJE T., FRANCOEUR S., MASCARENHAS A., WEI P., SCHIETTEKATTE F., Appl. Phys. Lett., 86 (2005), 112113.
  • [8] BISPING D., PUCICKI D., FISCHER M., HÖFLING S., FORCHEL A., J. Cryst. Growth, 311 (2009), 1715.
  • [9] BARANOWSKI M., KUDRAWIEC R., SYPEREK M., MISIEWICZ J., SARMIENTO T., HARRIS J.S., Nanoscale Res. Lett., 9 (2014).
  • [10] BANK S.R., BAE H.P., YUEN H.B., WISTEY M.A., GODDARD L.L., HARRIS JR. J.S., Electron. Lett., 42 (2006).
  • [11] ŚCIANA B., PUCICKI D., RADZIEWICZ D., SERAFIŃCZUK J., KOZŁOWSKI J., PASZKIEWICZ B., TŁACZAŁA M., POLOCZEK P., SĘK G., MISIEWICZ J., Vacuum, 82 (2008), 377.
  • [12] BARANOWSKI M., KUDRAWIEC R., MISIEWICZ J., HAMMAR M., Appl. Phys. A-Mater., 118 (2015), 479.
  • [13] PAN Z., LI L.-H., DU Y., LIN Y.-W., WU R.-H., Chinese Phys. Lett., 18 (2001), 659.
  • [14] LUNA E., TRAMPERT A., PAVELESCU E.-M., PESSA M., New J. Phys., 9 (2007), 1.
  • [15] LIU H.F., XIANG N., CHUA S.J., Appl. Phys. Lett., 89 (2006), 071905.
  • [16] PUCICKI D., BIELAK K., ŚCIANA B., RADZIEWICZ D., LATKOWSKA-BARANOWSKA M., KOVÁČ J., VINCZE A., TŁACZAŁA M., J. Cryst. Growth, 433 (2016), 105.
  • [17] CHAN M.C.Y., SURYA CH., WAI P.K.A., J. Appl. Phys., 90 (2001), 197.
  • [18] RYCZKO K., SĘK G., MISIEWICZ J., Superlattice Microst., 37 (2005), 273.
  • [19] BURT M.G., Semicond. Sci. Tech., 3 (1988).
  • [20] SUN Y., THOMPSON S.E., NISHIDA T., Strain Effect in Semiconductors. Theory and Device Application, Springer Science & Business Media, New York, 2009.
  • [21] MEI T., J. Appl. Phys., 101 (2007), 013520.
  • [22] SHAN W., WALUKIEWICZ W., AGER J.W., HALLER E.E., GEISZ J.F., FRIEDMAN D.J., OLSON J.M., KURTZ S.R., Phys. Rev. Lett., 82 (1999), 1221.
  • [23] VURGAFTMAN I., MEYER J.R., RAM-MOHAN R., J. Appl. Phys., 89 (2001), 5815.
  • [24] SALEJDA W., JUST M., TYC H., CMST, 6 (2000).
  • [25] SALEJDA W., TYC H., JUST M., Algebraiczne metody rozwiązywania równania Schrödingera, Wydawnictwo Naukowe PWN, Warszawa, 2002. (in Polish).
  • [26] LI Z.S., MENSZ P.M., Numerical simulation of composition grading in active layer of quantum well lasers, in: WÜNSCHE H.-J., PIPREK J., BANDELOW U., WENZEL H. (Eds.), NUSOD ’05. 5th International Conference on Numerical Simulation of Optoelectronic Devices 2005, Piscataway, New Jersey, 2001, p. 77.
  • [27] MISIEWICZ J., KUDRAWIEC R., Opto-Electron. Rev., 20 (2012), 101.
  • [28] TSANG W.T., Appl. Phys. Lett., 40 (1982), 217.
  • [29] LORDI V., YUEN H.B., BANK S.R., HARRIS J.S., Appl. Phys. Lett., 85 (2004), 902.
  • [30] PUCICKI D., BIELAK K., BADURA M., DAWIDOWSKI W., ŚCIANA B., Microelectron. Eng., 161 (2016), 13.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-754d4af1-1cf5-40ff-9b7d-0ee9ab12809b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.