Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sea level trends and their forcing over the eastern Mediterranean basin are investigated by using 27 years (1993–2019) of gridded sea level anomalies (SLA) derived from satellite altimetry and 9 tide gauge stations, along with sea surface temperature (SST) and temperature and salinity profiles. The contributions of atmospheric (wind and pressure) and steric components to the interannual variability of total SLA were evaluated. The thermosteric component represents the major contributor to the linear trend and was positive over most of the eastern Mediterranean, with a spatially averaged trend of 2.13±0.41 mm/year, accounting for 69% of the total sea level trend (3.1±0.61 mm/year). In contrast, the halosteric effect has a negative contribution to the steric SLA, with a mean trend of -0.75±0.19 mm/year. The atmospheric component trend was much lower at 0.32±0.24 mm/year. The interannual variability of SLA accounts for about 36% of overall sea level variability. Steric and atmospheric contributions to the interannual variability of sea level in the eastern Mediterranean account for about 52% and 18%, respectively. The strongest interannual variability and trends in SLA were observed over the basin's main recurrent gyres, with the maximum positive trend obtained over the Mersa–Matruh and Cyprus gyres, as well as the North Shikmona eddy, and maximum negative trend over the Ierapetra gyre. Over the study period, all tide gauges showed a positive and statistically significant trend, ranging from 1.47±0.77 to 5.79±1.32 mm/year after applying glacial isostatic adjustment and atmospheric correction, and were in good agreement with reconstructed steric sea level data.
Czasopismo
Rocznik
Tom
Strony
50--62
Opis fizyczny
Bibliogr. 53 poz., map., rys., tab., wyk.
Twórcy
autor
- University of Alexandria, Faculty of Science, Department of Oceanography, Alexandria, Egypt
- Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway
autor
- Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
Bibliografia
- 1. Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., Benveniste, J., Cazenave, A., Picot, N., 2019. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth Syst. Sci. Data 11, 1189-1202. https://doi.org/10.5194/essd-11-1189-2019
- 2. Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., Larnicol, G., 2016. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clim. Dyn. 47, 2851-2866. https://doi.org/10. 1007/s00382-016-3001-2
- 3. Calafat, F.M., Chambers, D.P., Tsimplis, M.N., 2012. Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J. Geophys. Res. Oceans 117. https:// doi.org/10.1029/2012JC008285
- 4. Calafat, F.M., Marcos, M., Gomis, D., 2010. Mass contribution to Mediterranean Sea level variability for the period 1948-2000. Glob. Planet. Change 73, 193-201. https://doi.org/10.1016/J. GLOPLACHA.2010.06.002
- 5. Carrère, L., Lyard, F., 2003. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing - Comparisons with observations. Geophys. Res. Lett. 30. https:// doi.org/10.1029/2002GL016473
- 6. Cazenave, A., Bonnefond, P., Mercier, F., Dominh, K., Toumazou, V., 2002. Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Glob. Planet. Change 34, 59-86. https://doi.org/10.1016/S0921-8181(02) 00106-6
- 7. Cazenave, A., Cabanes, C., Dominh, K., Mangiarotti, S., 2001. Recent sea level change in the Mediterranean Sea revealed by Topex/Poseidon satellite altimetry. Geophys. Res. Lett. 28, 1607-1610. https://doi.org/10.1029/2000GL012628
- 8. Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., Unnikrishnan, A., 2013. Chapter 13: Sea Level Change. In: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. State Fed. Reports Publ.
- 9. Criado-Aldeanueva, F., Del Río Vera, J., García-Lafuente, J., 2008. Steric and mass-induced Mediterranean Sea level trends from 14 years of altimetry data. Glob. Planet. Change 60, 563-575. https://doi.org/10.1016/J.GLOPLACHA.2007.07.003
- 10. Fenoglio-Marc, L., 2002. Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Phys. Chem. Earth 27, 1419-1431. https://doi.org/10.1016/ S1474-7065(02)00084-0
- 11. Fenoglio-Marc, L., Dietz, C., Groten, E., 2004. Vertical land motion in the Mediterranean Sea from altimetry and tide gauge stations. Mar. Geod. 27, 683-701. https://doi.org/10.1080/ 01490410490883441
- 12. Giorgi, F., 2006. Climate change hot-spots. Geophys. Res. Lett. 33. https://doi.org/10.1029/2006GL025734
- 13. Gomis, D., Ruiz, S., Sotillo, M.G., Álvarez-Fanjul, E., Terradas, J., 2008. Low frequency Mediterranean sea level variability: The contribution of atmospheric pressure and wind. Glob. Planet. Change 63, 215-229. https://doi.org/10.1016/j. gloplacha.2008.06.005
- 14. Greene, C.A., Thirumalai, K., Kearney, K.A., Delgado, J.M., Schwanghart, W., Wolfenbarger, N.S., Thyng, K.M., Gwyther, D.E., Gardner, A.S., Blankenship, D.D., 2019. The Climate Data Toolbox for MATLAB. Geochem. Geophy. Geosy. 20, 3774-3781. https://doi.org/10.1029/2019GC008392
- 15. Guinehut, S., Dhomps, A.L., Larnicol, G., Le Traon, P.Y., 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci. 8, 845-857. https:// doi.org/10.5194/os-8-845-2012
- 16. Hamed, K.H., Ramachandra Rao, A., 1998. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204, 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X
- 17. Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Han- kins, B., Smith, T., Zhang, H.M., 2021. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923-2939. https://doi.org/10.1175/ JCLI-D-20-0166.1
- 18. Hurrell, J.W., 1995. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 269 (5224), 676-679. https://doi.org/10.1126/SCIENCE.269.5224.676
- 19. Ibrahim, O., Mohamed, B., Nagy, H., 2021. Spatial Variability and Trends of Marine Heat Waves in the Eastern Mediterranean Sea over 39 Years. J. Mar. Sci. Eng. 9 (6), 643. https://doi.org/10. 3390/jmse9060643
- 20. Ishii, M., Kimoto, M., 2009. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287-299. https://doi.org/10. 1007/s10872-009-0027-7
- 21. Jayne, S.R., Wahr, J.M., Bryan, F.O., 2003. Observing ocean heat content using satellite gravity and altimetry. J. Geophys. Res. Ocean. 108, 1-12. https://doi.org/10.1029/2002jc001619
- 22. Jordà, G., Gomis, D., 2013. On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin. J. Geophys. Res. Ocean. 118, 953-963. https://doi.org/10.1002/jgrc.20060
- 23. Landerer, F.W., Volkov, D.L., 2013. The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys. Res. Lett. 40, 553-557. https://doi.org/10.1002/grl.50140
- 24. Levitus, S., Antonov, J.I., Boyer, T.P., Baranova, O.K., Garcia, H.E., Locarnini, R.A., Mishonov, A.V., Reagan, J.R., Seidov, D., Yarosh, E.S., Zweng, M.M., 2012. World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010. Geophys. Res. Lett. 39. https://doi.org/10.1029/2012GL051106
- 25. Marcos, M., Tsimplis, M.N., 2008. Coastal sea level trends in South- ern Europe. Geophys. J. Int. 175, 70-82. https://doi.org/10. 1111/j.1365-246X.2008.03892.x
- 26. McDougall, T.J., Barker, P.M., 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. Scor/Iapso Wg 127, 28 pp.
- 27. Menna, M., Gerin, R., Notarstefano, G., Mauri, E., Bussani, A., Pac- ciaroni, M., Poulain, P.-M., 2021. On the Circulation and Thermohaline Properties of the Eastern Mediterranean Sea. Front. Mar. Sci. 8, art. 671469, 19 pp. https://doi.org/10.3389/FMARS. 2021.671469
- 28. Mohamed, B., Abdallah, A.M., Alam El-Din, K., Nagy, H., Shaltout, M., 2019a. Inter-Annual Variability and Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea over the Last 25 Years. Pure Appl. Geophys. 176, 3787-3810. https://doi.org/10.1007/s00024-019-02156-w
- 29. Mohamed, B., El-Din, K.A., 2019. Sea level rise and vertical land motion in the eastern Mediterranean. In: 14th MEDCOAST Congress on Coastal and Marine Sciences, Engineering, Manage- ment and Conservation, MEDCOAST 2019, 479-486.
- 30. Mohamed, B., Mohamed, A., Alam El-Din, K., Nagy, H., Elsherbiny, A., 2019b. Sea level changes and vertical land mo- tion from altimetry and tide gauges in the Southern Levantine Basin. J. Geodyn. 128, 1-10. https://doi.org/10.1016/J.JOG. 2019.05.007
- 31. Nagy, H., Elgindy, A., Pinardi, N., Zavatarelli, M., Oddo, P., 2017. A nested pre-operational model for the Egyptian shelf zone: Model configuration and validation/calibration. Dyn. Atmos. Ocean. 80, 75-96. https://doi.org/10.1016/j.dynatmoce.2017. 10.003
- 32. Pascual, A., Marcos, M., Gomis, D., 2008. Comparing the sea level response to pressure and wind forcing of two barotropic models: Validation with tide gauge and altimetry data. J. Geophys. Res. Ocean. 113. https://doi.org/10.1029/2007JC004459
- 33. Pastor, F., Valiente, J.A., Khodayar, S., 2020. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 12, 2687. https://doi.org/10.3390/rs12172687
- 34. Pawlowicz, R., McDougall, T., Feistel, R., Tailleux, R., 2012. An historical perspective on the development of the Thermodynamic Equation of Seawater-2010. Ocean Sci. https://doi.org/ 10.5194/os-8-161-2012
- 35. Peltier, W.R., Argus, D.F., Drummond, R., 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G- C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450-487. https://doi.org/10.1002/2014JB011176
- 36. Pujol, M.I., Larnicol, G., 2005. Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst. 58, 121-142. https://doi.org/10.1016/j.jmarsys.2005. 07.005
- 37. Roether, W., Manca, B.B., Klein, B., Bregant, D., Georgopoulos, D., Beitzel, V., Kovaˇcevi ́c, V., Luchetta, A., 1996. Recent changes in eastern Mediterranean deep waters. Science 271 (5247), 333- 335. https://doi.org/10.1126/SCIENCE.271.5247.333
- 38. Simav, M., Yildiz, H., Türkezer, A., Lenk, O., Özsoy, E., 2012. Sea level variability at Antalya and Mente ̧s tide gauges in Turkey: Atmospheric, steric and land motion contributions. Stud. Geophys. Geod. 56, 215-230. https://doi.org/10.1007/ s11200-010-0067-x
- 39. Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V., Axaopoulos, P., Lascaratos, A., 2012. Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn. 62, 13-30. https://doi.org/10.1007/s10236-011-0493-5
- 40. Skliris, N., Zika, J.D., Herold, L., Josey, S.A., Marsh, R., 2018. Mediterranean sea water budget long-term trend inferred from salinity observations. Clim. Dyn. 51, 2857-2876. https://doi.org/10.1007/S00382-017-4053-7
- 41. Stammer, D., Cazenave, A., Ponte, R.M., Tamisiea, M.E., 2013. Causes for Contemporary Regional Sea Level Changes. Ann. Rev. Mar. Sci. 5, 21-46. https://doi.org/10.1146/annurev-marine-121211-172406
- 42. Stanev, E.V., Le Traon, P.Y., Peneva, E.L., 2000. Sea level variations and their dependency on meteorological and hydrological forcing: Analysis of altimeter and surface data for the Black Sea. J. Geophys. Res. Ocean. 105, 17203-17216. https://doi.org/10. 1029/1999jc900318
- 43. Storto, A., Bonaduce, A., Feng, X., Yang, C., 2019. Steric sea level changes from ocean reanalyses at global and regional scales. Water (Switzerland) 11, 1-31. https://doi.org/10.3390/w11101987
- 44. Taibi, H., Haddad, M., 2019. Estimating trends of the Mediterranean Sea level changes from tide gauge and satellite altimetry data (1993-2015). J. Oceanol. Limnol. 37, 1176-1185. https://doi. org/10.1007/s00343-019-8164-3
- 45. Torres, R.R., Tsimplis, M.N., 2013. Sea-level trends and interannual variability in the Caribbean Sea. J. Geophys. Res. Ocean. 118, 2934-2947. https://doi.org/10.1002/jgrc.20229
- 46. Tsimplis, M.N., Álvarez-Fanjul, E., Gomis, D., Fenoglio-Marc, L., Pérez, B., 2005. Mediterranean Sea level trends: Atmospheric pressure and wind contribution. Geophys. Res. Lett. 32, 1-4. https://doi.org/10.1029/2005GL023867
- 47. Tsimplis, M.N., Calafat, F.M., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., Struglia, M.V., Josey, S.A., Chambers, D.P., 2013. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Ocean. 118, 944-952. https://doi.org/10.1002/jgrc.20078
- 48. Tsimplis, M.N., Josey, S.A., 2001. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys. Res. Lett. 28, 803-806. https://doi.org/10.1029/2000GL012098
- 49. Tsimplis, M.N., Rixen, M., 2002. Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophys. Res. Lett. 29. https://doi.org/10.1029/2002GL015870
- 50. Vigo, I., Garcia, D., Chao, B.F., 2005. Change of sea level trend in the Mediterranean and Black seas. J. Mar. Res. 63, 1085-1100. https://doi.org/10.1357/002224005775247607
- 51. Wang, G., Cheng, L., Boyer, T., Li, C., 2017. Halosteric sea level changes during the Argo era. Water (Switzerland) 9, 1-13. https://doi.org/10.3390/w9070484
- 52. Wilks, D.S., 2011. Statistical methods in the atmospheric sciences. Academic Press.
- 53. Woodworth, P.L., Player, R., 2003. The Permanent Service for Mean Sea Level: An Update to the 21st Century. J. Coast. Res. 19, 287-295.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7548cd09-7ac7-4296-b3b9-8e9e080c2363