PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Toward a European Network of Positron Laboratories

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Polish Seminar on Positron Annihilation (42 nd ; 29.06-01.07.2016 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
Some applications of controlled-energy positron beams in material studies are discussed. In porous organic polysilicates, measurements of 3γ annihilation by Doppler broadening (DB) method at the Trento University allowed to trace pore closing and filling by water vapor. In silicon coimplanted by He+ and H+, DB data combined with positron lifetime measurements at the München pulsed positron beam allowed to explain Si blistering. Presently measured samples of W for applications in thermonuclear reactors, irradiated by W+ and electrons, show vast changes of positron lifetimes, indicating complex dynamics of defects.
Czasopismo
Rocznik
Strony
733--739
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • Institute of Physics, Faculty of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University in Toruń, 5/7 Grudziądzka Str., 87-100 Toruń, Poland
autor
  • Physics Department, University of Trento and TIFPA-INFN, 38123 Povo (TN), via Sommarive 14, Italy
autor
  • Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
  • National Research Nuclear University “MEPHI”, Kashirskoe sh. 31, Moscow, Russia
Bibliografia
  • 1. Dupasquier, A., Mills Jr, A. P., & Brusa, R. (Eds.).(2010). Physics with many positrons. 174th Proceedings of the International School of Physics “Enrico Fermi”. Amsterdam: IOS Press.
  • 2. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Scarel, G., & Fanciulli, M. (2007). Innovative dielectrics for semiconductor technology. Radiat. Phys. Chem., 76(2), 189–194. DOI: 10.1016/j.radphyschem. 2006.03.033.
  • 3. Karwasz, G. P., Zecca, A., Brusa, R. S., & Pliszka, D. (2004). Application of positron annihilation techniques for semiconductor studies. J. Alloy. Compd., 382(1/2), 244–251. DOI: 10.1016/j.jallcom. 2004.05.037.
  • 4. Dupasquier, A., Kögel, G., & Somoza, A. (2004). Studies of light alloys by positron annihilation techniques. Acta Mater., 52, 4707. DOI: 10.1016/j.actamat.2004.07.004.
  • 5. Goworek, T., Zaleski, R., & Wawryszczuk, J. (2004). Observation of intramolecular defects in n-alkanes C25H52-C29H60 by the positron annihilation method. Chem. Phys. Lett., 394, 90–92. DOI: 10.1016/j.cplett.2004.06.116
  • 6. Śniegocka, M., Jasińska, B., Goworek, T., & Zaleski, R. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviations from ETE model. Chem. Phys. Lett., 430, 351–354. DOI: 10.1016/j.cplett.2006.09.001.
  • 7. Hakala, M., Puska, M. J., & Nieminen, R. M. (1998). Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si. Phys. Rev. B, 57, 7621. DOI: 10.1103/PhysRevB.57.7621.
  • 8. Brusa, R. S., Deng, W., Karwasz, G. P., & Zecca, A. (2002). Doppler-broadening measurements of positron annihilation with high-momentum electrons in pure metals. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 194, 519–531. DOI:10.1016/S0168-583X(02)00953-9.
  • 9. Karbowski, A., Fidelus, J., & Karwasz, G. (2011). Testing an Ortec Lifetime System. Mater. Sci. Forum, 666, 155–159. DOI: 10.4028/www.scientific.net/MSF.666.155.
  • 10. Karbowski, A., Fisz, J. J., Karwasz, G. P., Kansy, J., & Brusa, R. S. (2008). Genetic algorithms for positron lifetime data. Acta Phys. Pol. A, 113, 1365–1372.
  • 11. Brusa, R., Deng, W., Karwasz, G. P., Zecca, A., & Pliszka, D. (2001). Positron annihilation study of vacancy-like defects related to oxygen precipitates in Czochralski-type Si. Appl. Phys. Lett., 79, 1492. DOI:10.1063/1.1401782.
  • 12. Saarinen, K., Nissilä, J., Kauppinen, H., Hakala, M., Puska, M. J., Hautojärvi, P., & Corbel, C. (1999). Identification of vacancy-impurity complexes in highly n-type Si. Phys. Rev. Lett., 82, 1883–1886. DOI:10.1103/PhysRevLett.82.1883.
  • 13. Coleman, P. G. (Ed.). (2000), Positron beams and their applications. Singapore: World Scientific.
  • 14. Brusa, R. S., Karwasz, G. P., Bettonte, M., & Zecca, A. (1997). A high performance electrostatic positron beam. Appl. Surf. Sci., 116, 59–62. DOI: 10.1016/S0169-4332(96)01028-8.
  • 15. Zecca, A., Bettonte, M., Paridaens, J., Karwasz, G. P., & Brusa, R. S. (1998). A new electrostatic positron beam for surface studies. Meas. Sci. Technol., 9,409–416. DOI: 10.1088/0957-0233/9/3/014.
  • 16. Zecca, A., Brusa, R. S., Duarte-Naia, M., Karwasz, G. P., Paridaens, J., Piazza, A., Kögel, G., Sperr, P., Britton, D. T., Uhlmann, K., Willutzki, P., & Triftshauser, W. (1995) A pulsed positron microbeam. Europhys. Lett., 29, 617–622. DOI: 10.1209/0295-5075/29/8/005.
  • 17. Hamada, E., Oshima, N., Suzuki, T., Kobayashi, H., Kondo, K., Kanazawa, I., & Ito, Y. (2000). New system for a pulsed slow-positron beam using a radioisotope. Radiat. Phys. Chem., 58, 771–775. DOI:10.1016/S0969-806X(00)00257-7.
  • 18. Hugenschmidt, C., Piochacz, C., Reiner, M., & Schrekkenbach,K. (2012). The NEPOMUC upgrade and advanced positron beam experiments. New J. Phys.,14, 055027. DOI: 10.1088/1367-2630/14/5/055027.
  • 19. Oshima, N., Suzuki, R., Ohdaira, R., Kinomura, A., Narumi, T., Uedono, A., & Fujinami, M. (2008).Brightness enhancement method for a high-intensity positron beam produced by an electron accelerator. J. Appl. Phys., 103, 094916. DOI: 10.1063/1.2919783.
  • 20. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G.P., Laidani, N., Bartali, R., & Anderle, M. (2005).Amorphous carbon film growth on Si: Correlation between stress and generation of defects into the substrate. Appl. Phys. Lett., 86, 221906. DOI:10.1063/1.1940738.
  • 21. Ferragut, R., Calloni, A., Dupasquier, A., Consolati,G., Quasso, F., Giammarchi, M. G., Trezzi, D., Egger,W., Ravelli, L., Petkov, M. P., Jones, S. M., Wang, B.,Yaghi, O. M., Jasińska, B., Chiodini, N., & Paleari, A. (2010). Positronium formation in porous materials for antihydrogen production. J. Phys. Conf. Ser., 225,012007. DOI: 10.1088/1742-6596/225/1/012007.
  • 22. Consolati, G. (2002). Positronium trapping in small voids: Influence of their shape on positron annihilation results. J. Chem. Phys., 117, 7279. DOI:10.1063/1.1507578.
  • 23. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68(3/4), 531–534. DOI: 10.1016/S0969-806X(03)00224-X.
  • 24. Jasińska, B., Dawidowicz, A. L., Goworek, T., & Wawryszczuk, J. (2003). Pore size determination by positron annihilation lifetime spectroscopy. Opt.Appl., 33(1), 7–12.
  • 25. Gorgol, M., Jasińska, B., & Reisfeld, R. (2015). PALS investigations of matrix Vycor glass and doped by molecules of luminescent dye and silver nanoparticles.Discrepancies from the ETE model. Nukleonika,60(4), 717–720.
  • 26. Macchi, C., Mariotto, G., Karwasz, G. P., Zecca, A.,Bettonte, M., & Brusa, R. S. (2004). Depth profiled porosity and micro-structure evolution studied by Positron Annihilation and Raman spectroscopy in SiOCH low-κ films. Mater. Sci. Semicond. Proc., 7,289–294. DOI: 10.1016/j.mssp.2004.09.093.
  • 27. Brusa, R. S., Spagolla, M., Karwasz, G. P., Zecca, A., Ottaviani, G., Corni, F., & Carollo, E. (2004). Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy. J. Appl. Phys.,95, 2348–2354. DOI: 10.1063/1.1644925.
  • 28. Brusa, R. S., Karwasz, G. P., Tiengo, N., Zecca, A., Corni, F., Tonini, R., & Ottaviani, G. (2000). Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy.Phys. Rev. B, 61, 10154–10166. DOI: 10.1103/PhysRevB.61.10154.
  • 29. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Egger, W., Sperr, P., & Kögel, G. (2006). Decoration of buried surfaces in Si detected by positron annihilation spectroscopy. Appl. Phys. Lett., 88, 011920. DOI:10.1063/1.2162691.
  • 30. Song, M. -Y., Yoon, J. -S., Cho, H., Itikawa, Y., Karwasz, G. P., Kokoouline, V., Nakamura, Y., & Tennyson,J. (2015). Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data, 44, 023101.DOI: 10.1063/1.4918630.
  • 31. Yu-Wei, You, Dongdong, Li, Xiang-Shan, Kong, Xuebang,Wu, Liu, C. S., Fang, Q. F., Pan, B. C., Chen,J. L., & Luo, G. -N. (2014). Clustering of H and He,and their effects on vacancy evolution in tungsten in a fusion environment. Nucl. Fusion, 54, 103007. DOI:10.1088/0029-5515/54/10/103007.
  • 32. Ogorodnikova, O. V., Schwarz-Selinger, T., Sugiyama, K., & Alimov, V. Kh. (2011). Deuterium retention in tungsten exposed to low-energy pure and helium-seeded deuterium plasmas. J. Appl. Phys., 109, 013309.DOI: 10.1063/1.3505754.
  • 33. Tyburska-Püschel, B., Alimov, V. Kh, ’t Hoen, M. H.J., Zgardzinska, B., Dorner, J., & Hatano, Y. (2013).Deuterium retention in tungsten damaged with MeV--range W ions at various temperatures and then exposed to D2 gas. In 14th International Conference on Plasma-Facing Materials and Components for Fusion Applications, May 13–17, 2013. Forschungszentrum Juelich, Germany. http://www.fz-juelich.de/conferences/PFMC-14/EN/_SharedDocs/Downloads/EN/pfmc14_book_of_abstracts.html?nn=1264182.
  • 34. Ogorodnikova, O. V., & Sugiyama, K. (2013). Effect of radiation-induced damage on deuterium retention in tungsten, tungsten coatings and Eurofer. J. Nucl. Mater., 442, 518–527. DOI: 10.1016/j.jnucmat.2013.07.024.
  • 35. Ogorodnikova, O. V., & Gann, V. (2015). Simulation of neutron-induced damage in tungsten by irradiation with energetic self-ions. J. Nucl. Mater., 460, 60–71.DOI: 10.1016/j.jnucmat.2015.02.004.
  • 36. Ogorodnikova, O. V., Sugiyama, K., Barthe, M. -F.,Sibid, M., Ciupiński, Ł., & Płociński, T. (2013). Saturation of deuterium trapping at radiation-induced damage in self-ion irradiated tungsten. In 16th International Conference on Fusion Reactor Materials (ICFRM-16), Beijing, China. http://edoc.mpg.de/634511.
  • 37.Egger, W. (2010). Pulsed low-energy positron beams in materials sciences. In R. S. Brusa, A. Dupasquier,& A. P. Mills Jr. (Eds.), Physics with many positrons (pp. 419–449). Amsterdam: North-Holland Publ. Co.
  • 38.Hugenschmidt, C. (2010). Positron sources and positron beams. In R. S. Brusa, A. Dupasquier, & A. P. Mills Jr. (Eds.), Physics with many positrons (pp. 399–417). Amsterdam: North-Holland Publ. Co.
  • 39. Brandt, W., Berko, S., & Walker, W. W. (1960). Positronium decay in molecular substances. Phys. Rev.,120, 1289–1295.
  • 40. Uhlmann, K., Triftshäuser, W., Kögel, G., Sperr, P.,Britton, D. T., Zecca, A., Brusa, R. S., & Karwasz,G. P. (1995). A concept of a scanning positron microscope.Fresenius J. Anal. Chem., 353, 594–597. DOI:10.1007/BF00321331.
  • 41. Zecca, A., & Karwasz, G. (2001). Positrons go into detail. Phys. World, 11, 21.
  • 42. Kögel, G., Egger, W., Rödling, S., & Gudladt, H. J.(2004). Investigation of fatigue cracks in an Al-based alloy by means of pulsed positron (micro)beams.Mater. Sci. Forum, 445/446,126–128. DOI: 10.4028/www.scientifi c.net/MSF.445-446.126.
  • 43. Uedono, A., Kurihara, K., Yoshihara, N., Nagao, S.,& Ishibashi, S. (2015). Vacancies in InxGa1-xN/GaN multiple quantum wells fabricated on m-plane GaN probed by a monoenergetic positron beam. Appl. Phys. Express, 8, 051002. DOI: 10.7567/APEX.8.051002.
  • 44. Makochekanwa, C., Machacek, J. R., Jones, A. C. L., Caradonna, P., Slaughter, D. S., McEachran, R. P.,Sullivan, J. P., Buckman, S. J., Bellm, S. M., Lohmann, B., Fursa, D. V., Bray, I., Mueller, D. W., Stauffer,A. D., & Hoshino, M. (2011). Low-energy positron interactions with krypton. Phys. Rev. A, 83, 032721.DOI: 10.1103/PhysRevA.83.032721.
  • 45. Pelli, A., Laakso, A., Rytsölä, K., & Saarinen, K.(2006). The design of the main accelerator for a pulsed positron beam. Appl. Surf. Sci., 252, 3143–3147. DOI:10.1016/j.apsusc.2005.08.054.
  • 46. Wagner, A., Anwand, W., Butterling, M., Cowan,T. E., Fiedler, F., Fritz, F., Kempe, M., & Krause--Rehberg, R. (2015). Positron-annihilation lifetime spectroscopy using electron Bremsstrahlung. J.Phys. Conf. Ser., 618, 012042. DOI: 10.1088/1742-6596/618/1/012042.
  • 47. Köver, A., Williams, A. I., Murtag, D. J., Fayer, S. E.,& Laricchia, G. (2014). An electrostatic brightness--enhanced timed positron beam for atomic collision experiments. Meas. Sci. Technol., 25, 075013. DOI:10.1088/0957-0233/25/7/075013.
  • 48. Schut, H., Van Veen, A., de Roode, J., & Labohm, F. (2004). Long term performance of the reactor based positron beam POSH. Mater. Sci. Forum, 445/446,507–509.
  • 49. Desgardin, P., Liszkay, L., Barthe, M. F., Henry, L.,Briaud, J., Saillard, M., Lepolotec, L., Corbel, C.,Blondiaux, G., Colder, A., Marie, P., & Levalois, M.(2001). Slow positron beam facility in Orleans. Mater. Sci. Forum, 363, 523–525.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-754814d6-8016-4cf3-8fa3-0216ca076b43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.