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Abstract

The Differential Evolution algorithm, like other evolutionary techniques, presents as main

disadvantage the high number of objective function evaluations as compared with clas-

sical methods. To overcome this disadvantage, this work proposes a new strategy for

the dynamic updating of the population size to reduce the number of objective function

evaluations. This strategy is based on the definition of convergence rate to evaluate the

homogeneity of the population in the evolutionary process. The methodology is applied

to the solution of singular optimal control problems in chemical and mechanical engi-

neering. The results demonstrated that the methodology proposed represents a promising

alternative as compared with other competing strategies.

1 Introduction

The Optimal Control Theory has been devel-

oped for over forty years. With the advances of dig-

ital computer techniques, associated with the popu-

larity of dynamic simulation tools, and the existence

of a competitive global market and environmental

constraints, new methodologies for optimal control

have been proposed. Numerous applications using

the Optimal Control Theory can be found in fields

of science and engineering, such as aerospace, pro-

cess control, robotics, bioengineering, economics,

finance, and management science [1, 2].

The Optimal Control Problem consists in the

determination of the control variable profiles that

minimize (maximize) a given performance index.

For this problem, when the differential index fluc-

tuation occurs as due to the activation and deacti-

vation of inequality constrains or when the control

variable behaves linearly in the Hamiltonian func-

tion, this is called Singular Optimal Control Prob-

lem (SOCP) [1].

Several numerical methods have been proposed

in the literature to solve SOCP [1, 3]. They are

usually classified according to three broad cate-

gories regarding their underlying formulation: di-

rect optimization methods, Pontryagin’s Maximum

Principle (PMP) based methods, and HJB-based

(Hamilton-Jacob-Bellman) methods. Among these

methods, the direct approach has been preferen-
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tially used in the last several years. This approach

uses control parameterization or state and control

parameterizations, transforming the original prob-

lem into a finite dimensional optimization problem.

The solution of nonlinear programming problems

(NLP) of great dimension or the attainment of the

gradients of the objective function in the sequential

method is not trivial [2, 4, 5, 6].

Recently, algorithms based on heuristic ap-

proaches have been used to solve the SOCP due to

the success observed in the solution of general op-

timization problems. In this context, the Differen-

tial Evolution Algorithm (DE), proposed by Storn

and Price [7], has been applied successfully. Ka-

padi and Gudi [8] determined the substrate concen-

tration profiles in a feed-batch reactor with singu-

lar arc. Lobato et al. [9] presented a new algo-

rithm for dealing with control optimization prob-

lems. The proposed methodology consists in the

extension of the DE to problems with multiple ob-

jectives, through the incorporation of mechanisms

such as rank ordering and neighborhood potential

solution-candidates exploration. This algorithm is

applied to determine the switching times (events)

and operation time of the lysine fermentation pro-

cess. Wang and Chiou [10] proposed an algo-

rithm based on DE to determine the optimal control

and optimal time location problems of differential-

algebraic systems. Recently, Chowdhury et al. [11]

presented a hybrid evolutionary direct search tech-

nique based on DE to solve optimal control prob-

lems.

In spite of numerous applications, this algo-

rithm uses fixed population size during the evolu-

tionary process. According to Vellev [12] this char-

acteristic can affect the robustness and the compu-

tational cost of the algorithms. Small population

size may result in local convergence; large popu-

lation size will increase computational efforts and

may lead to slow convergence. So, an appropriate

population size can assure the effectiveness of the

algorithm.

In this context, the main goal of this paper is

to introduce a systematic methodology to find the

control strategy and the switching times (events) by

using the Differential Evolution Algorithm with a

new strategy for the dynamic updating of the popu-

lation size. This work is organized as follows. Sec-

tions 2 and 3 present the general aspects regarding

the SOCP and singular arcs, respectively. A review

dedicated to the DE technique is presented in Sec-

tion 4. In Section 5 the proposed methodology is

described. The results and discussion are presented

in Section 6. Finally, the conclusions are outlined

in Section 7.

2 Singular Optimal Control Prob-
lems

Mathematically, the SOCP can be formulated as

follows [1]:

min
u(t),t f

J = Ψ(z(t f ), t f )+

t f∫

t0

L(z,u, t)dt (1)

where z is the state variables vector and u is

the control variables vector. Ψ and L are the first

and second terms of the performance index, re-

spectively. The objective is subject to the implicit

Differential-Algebraic Equations (DAE) system as

given by:

f (ż,z,u, t) = 0 (2)

g(z,u, t)≤ 0 (3)

p(u, t)≤ 0 (4)

q(z,u, t)|t=t f
= 0 (5)

with consistent initial conditions given by:

ϕ(ż(t0),z(t0),u(t0), t0) = 0 (6)

where J(.), L(.), Ψ(.) → R; f (.),ϕ(.) → R
mz ; z ∈

R
mz ; u ∈ R

mu ; g ∈ R
mg ; p ∈ R

mp and q ∈ R
mq .

According to the Optimal Control Theory [1, 2,

3], the solution of the SOCP, defined by Eq.(1) to

Eq.(6), is satisfied by the co-state equations and the

stationary condition given, respectively, by:

λ̇T ≡−∂H
∂z

λ(t f ) =
∂Ψ
∂z

∣∣∣∣
t=t f

(7)

∂H
∂u

= 0 (8)

where H is the Hamiltonian function defined by:

H ≡ L+λT f (9)

The system formed by Eq.(7) to Eq.(9) is known

as the Euler-Lagrange equations, which are charac-

terized by boundary value problems (BVPs). Ac-

cording Bryson and Ho [1] and Feehery [2] the
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main difficulties associated with the SOCP solu-

tion are the following: the existence of end-point

conditions or region constraints implies in multipli-

ers and associated complementary conditions that

significantly increase the difficulty of solving the

BVP by the indirect method; the existence of con-

straints involving the state variables and the applica-

tion of slack variables method may originate DAE

of higher index, regardless the constraint activation

status, even in problems where the number of in-

equality constraints is equal to the number of con-

trol variables; the Lagrange multipliers can be very

sensitive to the initial conditions.

3 Singular Arcs

The solution of SOCP presents special chal-

lenges because it demands the knowledge of the se-

quence and the number of constraint activations and

deactivations (events) along the trajectory. When

the amount of constraints is reduced, it is usually

possible to determine this sequence by examining

the solution of the problem without constraints.

However, the presence of a large number of re-

strictions brings a problem of combinatorial nature

[13, 14]. In the events, due to discontinuities in

the state and/or the co-state variables, changes in

the functional form of the DAE and/or in the tra-

jectories of the control variable in each phase may

occur. As a consequence, the differential index of

the system can change throughout the solution tra-

jectory, increasing when the inequality becomes ac-

tive. The existence of sections of fluctuating index

leads to different errors in these sections, demand-

ing the application of adjusted numerical strategies

for each section. Therefore, it is necessary to know

previously the moments of activation and deactiva-

tion of the restrictions in order to solve the prob-

lem adequately. Another difficulty is the presence

of singular arcs, where the second derivative ma-

trix of the Hamiltonian with respect to the control

is only positive semi-definite [1, 2].

A particular case of great interest is the one that

appears when the control variable behaves linearly

in the Hamiltonian function. In general, no mini-

mum optimal solution will exist for such problems

unless inequality constraints in the state and/or con-

trol are specified. If the inequality constraints are

linear with respect to the control variable, it is rea-

sonable to expect that the minimum solution, if it

exists, will always impose that the control variables

are located at a point belonging to the border of the

viable region of control [1, 3, 8, 9].

Consider the following system of equations:

ż = F1 (z)+F2 (z)uz(to) = zo (10)

with the control variable given by:

umin ≤ u ≤ umax (11)

The Hamiltonian function is defined as:

H = λT (F1 (z)+F2 (z)u) (12)

For this class of control we have:

u =

⎧⎨
⎩

umax λT F2 < 0

ℑ λT F2 = 0

umin λT F2 > 0

(13)

where ℑ is the Switching Function [3, 9, 30].

4 The Differential Evolution Algo-
rithm

Differential Evolution (DE) is an optimization

technique that belongs to the family of evolution-

ary computation, which differs from other evolu-

tionary algorithms in the mutation and recombina-

tion schemes. DE executes its mutation operation

by adding a weighted difference vector between

two individuals to a third individual. Then, the

mutated individuals will perform discrete crossover

and greedy selection with the corresponding indi-

viduals from the last generation to produce the off-

spring.

The key control parameters for DE are the fol-

lowing: NP - the population size, CR - the crossover

constant, and F - the weight applied to the random

differential (scaling factor).

A classical DE algorithm is presented bellow

[15, 16].

Algorithm: Differential Evolution

Initialize and evaluate population P

while (not done) {
for (i = 0; i < N; i++) {

Create candidate C[i]
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Evaluate C[i]
if (C[i] is better than P[i])
P′[i] = C[i]
else

P′[i] = P[i]

}
P = P′

}

Algorithm: Create candidate C [i]

Randomly select parents P[i1], P[i2], and P[i3]

where i, i1, i2, and i3

are different.

Create initial candidate

C′[i] = P[i1] + D× (P[i2]−P[i3]).

Create final candidate C[i] by crossing over the

genes of P[i] and

C′[i] as follows:

for ( j = 0; j < N; j++) {
if (r <CR)

C[i][ j] = C′[i][ j]
else

C[i][ j] = P[i][ j]

}

NP is the population size, P is the population of

the current generation, and P’ is the population to

be formed for the next generation, C[i] is the candi-

date solution with population index i, C[i][j] is the

j-th entry in the solution vector of C[i] and r is a

random number between 0 and 1.

Price and Storn [7] have given some simple

rules for choosing the key parameters of DE for

general applications. Normally, NP should be about

5 to 10 times the dimension (number of parameters

in a vector) of the problem. As for F, it lies in the

range 0.4 to 1.0. Initially F = 0.5 can be tried, then F
and/or NP is increased if the population converges

prematurely.

Storn et al. [15] proposed various mutation

schemes for the generation of new vectors (candi-

date solutions) by combining the vectors that are

randomly chosen from the current population as

shown:

– rand/1: x = xr1 +F (xr2 − xr3)

– rand/2: x = xr1 +F (xr2 − xr3 + xr4 − xr5)

– best/1: x = xbest +F (xr2 − xr3)

– best/2: x = xbest +F (xr2 − xr3 + xr4 − xr5)

– rand/best/1: x = xr1 +F (xbest − xr1 + xr1 − xr2)

– rand/best/2: x = xr1 + F (xbest − xr1)+
+F (xr1 − xr2 + xr3 − xr4)

DE has been successfully tested in various

fields, such as: solution of multi-objective optimal

control problems with index fluctuation applied to

fermentation process [9], digital filter design [17],

synthesis and optimization of heat integrated distil-

lation system [18], multi-objective optimization of

mechanical structures [19], solution of inverse ra-

diative transfer problems in two-layer participating

media [21], estimation of drying parameters in ro-

tary dryers [20], apparent thermal diffusivity esti-

mation of the drying of fruits [22], Gibbs free en-

ergy minimization in a real system [23], estima-

tion of space-dependent single scattering albedo in

radiative transfer problems [24, 25, 26], design of

fractional order PID controllers [27], and other ap-

plications [15, 16].

4.1 Dynamic Updating of the Population
Size

All classical selection algorithms keep the pop-

ulation size fixed during the evolutionary process.

This aspect simplifies the algorithms but it is an ar-

tificial restriction and does not follow any analogy

to the biological evolution, where the number of in-

dividuals in a population varies continuously with

time, increasing when there are highly-fitted indi-

viduals and abundant resources, and decreasing oth-

erwise. Intuition hints that it may be beneficial for

the population to expand in the early generations

when there is high phenotype diversity and there is

opportunity to experiment with different character-

istics of the individuals, and to shrink with the in-
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crease of population convergence, when the unifi-

cation of the individuals in terms of structure and

fitness no longer justifies the maintenance of a large

population and the higher computational costs asso-

ciated with it [12].

In this context, Sun et al. [28] studied the influ-

ence of two strategies for the dynamic updating of

the individuals number of the population during the

evolutionary process:

NP = (NPmax −NPmin)

(
Itermax − iter

Itermax

)
+NPmin

(14)

NP = max

(
NPmax

2
sin

(
iter
A

)
+

NPmax

2
,NPmin

)
(15)

where Itermax is the generation maximum number,

iter is the current generation, NPmin, and NPmax, are

the minimal number and maximum number of indi-

viduals in the population, respectively and A is the

amplitude in sin function.

In this work, an adaptive population size

method with partial increasing or decreasing num-

ber of individuals according to diversities in the end

of each generation is adopted. Besides, initially the

convergence rate (ω) is defined as:

ω =
faverage

fworst
(16)

where faverage is the average value of the objective

function and fworst is the worst value of the objec-

tive function. Consequently, the defined conver-

gence rate evaluates the homogeneity of the pop-

ulation in the evolutionary process: if ω is close

to zero, e.g., the value worst of the objective func-

tion is different of the average value of the objective

function; if ω is close to one, the population is ho-

mogeneous. Thus, a simple equation for dynamic

updating of the population size is proposed:

NP = round(NPminω+NPmax(1−ω)) (17)

where the operator round(.) indicates the rounding

to the nearest integer.

It should be emphasized that the equation

Eq.(17) updates the population size as based on

the convergence rate, differently from Eq.(14) and

Eq.(15) in which any information regarding the evo-

lution of the process is considered. This modifica-

tion in the canonical DE algorithm is defined as Im-

proved Differential Evolution algorithm (IDE).

5 Methodology

The methodology proposed in this work con-

sists in transforming the original SOCP with differ-

ential index fluctuation, into a nonlinear optimiza-

tion problem with constant differential index (equal

to one).

Let the time interval t ∈ [to, ..., t f ] be dis-

cretized using N time nodes, ti, such that t0 = to <
t1 < ... < tN = t f . In each subinterval t ∈ [ti ti+1],
i=1, 2, ..., N, let the control input be approximated

by

u ≡ ui for ti ≤ t ≤ ti+1 (18)

With the piecewise linear approximation the un-

known control input u(t) is replaced by N unknown

parameters u1,u2, ...,uN . Besides, in this formula-

tion, the localization of each event ti also is un-

known and should be calculated, resulting in 2N-1

design variables. The resulting non-linear optimiza-

tion problem (with differential index equal to one)

is solved by using IDE.

6 Results and Discussion

In order to evaluate the performance of the

IDE algorithm, the Adaptive Differential Evolu-

tion algorithm ADE(i) is considered, e.g., using the

Eq.(14) (i=1) and Eq.(15) (i=2) to update the pop-

ulation size in DE algorithm. In this sense, three

classical SOCP, with different level of complexity,

are considered in this section. For evaluating the

methodology proposed in this work, some practi-

cal points regarding the application of the procedure

should be emphasized:

– The parameters used by DE algorithm are the

following [7, 8, 9, 10]: 25 individuals, 200 gen-

erations, perturbation rate and crossover proba-

bility equal to 0.8 and DE/rand/1/bin strategy

for the generation of potential candidates.

– The parameters used by IDE algorithm are the

following [7, 8, 9, 10]: same used by DE algo-

rithm, minimal and maximum numbers of indi-

viduals in the population equals to 5 and 25, re-

spectively.

– The parameters used by the algorithms ADE(1)

and ADE(2) are the following [28]: same used
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by IDE algorithm and the amplitude assigned to

the sin function equal to 2.0.

– The stopping criteria used: when the difference

between the best value and the average value of

population is smaller than 10−8, the optimiza-

tion process is finalized.

– All case studies were run 20 times independently

to obtain the average values shown in the up-

coming tables.

– To initialize the random generator in each simu-

lation the following seeds are used: [0 1 2 3 4 ...

19]. This procedure allows a better comparison

among the evolutionary strategies utilized in this

work.

– It should be emphasized that to solve the system

of differential equations the well known Runge-

Kutta Method 4-5th order was used.

6.1 Catalyst Mixing Problem

This problem considers in a plug-flow reactor

packed with two catalysts and involving the reac-

tions proposed by Gunn and Thomas [29], and sub-

sequently considered by Logsdon [30], and Vassil-

iadis [31]:

S1
k1↔
k2

S2
k3→S3

The symbols k1 and k2 are, respectively, the re-

action rate constants of the first two reactions in a

reactor where the catalyst consists entirely of the

substance which catalyzes the reversible reactions

S1 ↔ S2, while the symbol k3 is the reaction rate

constant of the third reaction in a reactor where the

catalyst consists entirely of the substance which cat-

alyzes the reaction S1 ↔ S2. The optimal mixing

policy of the two catalysts has to be determined in

order to maximize the production of species S3:

J = 1− x1(t f )− x2(t f ) (19)

subject to mass balance of species S1 (x1) and S2

(x2),
dx1

dt
= u(10x2 − x1) x1(0) = 1 (20)

dx2

dt
= u(x1 −10x2)− (1−u)x2 x2(0) = 0 (21)

0 ≤ u ≤ 1, t f = 1 (22)

where t represents the residence time of the sub-

stances from the instant of entry to the reactor. The

catalyst blending fraction u is the fraction of the cat-

alyst formed by the substance that catalyzes the re-

action S1 ↔ S2. This fraction can be varied along

the axial position of the reactor.

This classical problem with differential index

equals to 3 was first posed by Gunn and Thomas

[29] and has been solved by Logsdon [30] us-

ing orthogonal collocation on finite elements, by

Vassiliadis [31] using the control parameterization

technique, by Lobato [3] using a hybrid approach

(direct optimization methods associated with PMP

method), and by Lobato and Steffen [32] by us-

ing the control parameterization technique and the

Multi-Particle Collision Algorithm (MPCA).

Tables 1 and 2 present a comparison of the re-

sults obtained (objective function, number of objec-

tive function evaluations (Neval), events localization

and control strategy) using DE, ADE(1), ADE(2)

and IDE algorithms and other optimal control tech-

niques. In this case 3 control elements (N=3) were

used, and consequently, 5 (2N-1) design variables

were used into account in all evolutionary strate-

gies. In this first table it is possible to observe that

all the algorithms with the strategy of dynamic ally

updating the population size observes a reduction in

the number of objective function evaluations. The

best performance was obtained by IDE (32% with

respect to DE canonical).

Table 1. Comparison of the results obtained for the

catalyst mixing problem using various optimal

control techniques.

Reference J (Eq.(19)) Neval

NPSOL [31] 0.048055 -

SNOPT [33] 0.048080 -

IA [3] 0.048057 -

MPCA [32] 0.047732 12000

DE 0.048080 5025

ADE(1) 0.048069 4025

ADE(2) 0.047990 3850

IDE 0.048079 3220
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Table 2. Events and control strategy.

ts1 ts2 u1 u2 u3

[3]∗ 0.128 0.737 1.000 0.226 0.000

[32]∗∗ 0.129 0.732 1.000 0.227 0.000

DE 0.128 0.733 1.000 0.227 0.000

ADE(1) 0.128 0.734 1.000 0.226 0.000

ADE(2) 0.127 0.734 1.000 0.227 0.001

IDE 0.128 0.733 1.000 0.226 0.000

Figure 1 presents the evolution of the best val-

ues found for the objective function. In this figure,

it is possible to observe that the optimal solution is

found after 20 generations. The following genera-

tions are used for the refinement of the solution.

Figure 1. Objective function (J) versus number of

iterations.

Figures 2 and 3 show the state and control vari-

ables profiles obtained by using IDE.

Figure 2. State variables profiles.

Figure 3. Control variable profile.

6.2 Batch Reactor

Let us first consider the consecutive chemical

reaction A → B →C in a batch reactor, as presented

by Bilous and Amundson [34], and further used

as an example for practical control by Marroquin

and Luyben [35], Luus and Okongwu [36] using

iterative dynamic programming (IDP), and by Lo-

bato and Steffen [32] using the control parametriza-

tion technique and the Multi-Particle Collision al-

gorithm.

In the consecutive reaction scheme it is required

to maximize the production of the desired compo-

nent B. The reaction in each step is assumed as a

first order one, so that the system is described by

the two following differential equations:

dx1

dt
=−k1x1x1(0) = 0.95 (23)

dx2

dt
= k1x1 − k2x2x2(0) = 0.05 (24)

where x1 is the concentration (mol/l) of the reactant

A and x2 is the concentration of the desired prod-

uct B. The symbols kl and k2 are, respectively, the

reaction rate constants given by

k1 = 5.35×1010 exp

(−9000

u

)
(25)

k2 = 4.61×1017 exp

(−15000

u

)
(26)

and the batch time is specified as t f =30 min. The

performance index to be maximized is the concen-

tration of the component B at the specified final

time, e.g.,

J = x2(t f ) (27)
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The standard optimal control problem is then to

find the temperature profile (u), so that the perfor-

mance index expressed by Eq.(27) is maximized.

The control variable is bounded by

300 ≤ u ≤ 400 (28)

Table 3 presents a comparison of the results

obtained by using the algorithms DE, ADE(1),

ADE(2) and IDE and by other optimal control tech-

niques. All evolutionary algorithms used 20 control

elements, and consequently, 39 design variables.

Table 3. Comparison of the results obtained for the

batch reactor problem using various optimal

control techniques.

Reference J (Eq.(27)) Neval

IDP [36] 0.768370 -

MPCA [32] 0.768311 10250

DE 0.768369 4525

ADE(1) 0.768299 3850

ADE(2) 0.768270 3700

IDE 0.768370 2950

In this table all the algorithms with strategy

of dynamic ally updating the population size ob-

serves a reduction in the number of objective func-

tion evaluations (Neval). The best performance was

obtained by IDE (35% with relation to DE canoni-

cal).

Figure 4 presents the evolution of the best val-

ues found for the objective function. Similarly to

the previous case, with 100 generations, the optimal

solution is found.

Figure 4. Objective function (J) versus number of

iterations.

Figures 5 and 6 presents the state and control

variables profiles simulated by using the best design

variables obtained by IDE.

Figure 5. State variables profiles.

Figure 6. Control variable profile.

6.3 Goddard Problem

This problem was first proposed by the Ameri-

can rocket pioneer R. H. Goddard in 1919 when he

was building a rocket to be fired vertically to reach

high altitudes (a sounding rocket). It can be stated

as follows: find the thrust profile to maximize the

final altitude of a sounding rocket, given the initial

mass, the fuel mass, and the drag characteristics of

the rocket. The equations of motion are [1, 37, 38]

to the following:

x3ẋ1 = u−D(x1,x2)− x3G(x2)− x3G(x2) (29)

ẋ2 = x1 (30)

cẋ3 =−u (31)
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where [x1(0) x2(0) x3(0)] = [x1o x2o x3o] is the initial

conditions vector, x1 is the vertical velocity, x2 is the

radial distance from the center of the Earth, x3 is the

mass of the rocket, u is the rocket thrust, D is the

aerodynamic drag, g is the gravitational force per

unit of mass, c is the specific impulse of the rocket

fuel (a constant). The fuel mass is x3o − x3 f . We

wish to find u to maximize x2(t f ) with x3(t f ) = x3 f

and bounds on the rocket thrust:

J = maxx2(t f ) (32)

0 ≤ u ≤ umax (33)

This problem presents a singular control due to

the presence of the control variable u in the linear

form. Besides, as presented in Eq.(13), there are

three possibilities for the control strategy: bang-

singular-bang.

Goddard Problem parameters [1, 37, 38]:

c=0.5, β=500 miles−1, x3o=1, x3 f =0.6, umax=3.5,

ρoCD=620, Go=32.2 kft/sec2 and x2o=0 (Earth ra-

dius = 2.1×107 miles). In this paper the following

expression for D and G were considered:

D =
1

2
ρox2

2CDSexp(−βx1) (34)

G =
1

x2
1

(35)

Table 4 presents the results obtained by using

the DE, ADE(1), ADE(2) and IDE algorithms. All

evolutionary strategies used 40 control elements,

and consequently, 79 design variables.

Table 4. Comparison of the results obtained for

the Goddard problem.

Reference J(Eq(32)) ts1 ts2 t f Neval

NPSOL

[2] 50.874 18.97 58.44 160.24 -

DE 50.874 18.97 58.44 160.24 5000

ADE(1) 50.873 18.96 58.43 160.22 3850

ADE(2) 50.874 18.94 58.43 160.20 3650

IDE 50.873 18.97 58.43 160.22 2900

As observed in earlier test cases, all the algo-

rithms with the strategy of dynamically updating

the population size observes a reduction in the num-

ber of objective function evaluations (Neval) in rela-

tion to the canonical DE. Besides, the performance

obtained by IDE (42%) is better. Figure 7 presents

the evolution of the best values found for the objec-

tive function by using the IDE algorithm.

Figure 7. Objective function (J) versus number of

iterations.

Figures 8 to 11 show the altitude, velocity, mass

and thrust profiles. In these figures, it is easy to lo-

cate the events and the behavior of the control vari-

able in a singular arc. This singular arc, depicted the

in in Figure 11, corresponds to thrust slightly larger

than the drag plus weight, consequently, the rocket

is accelerating upward but not wasting fuel to over-

come the larger drag it would have encountered if

the maximum thrust had been used.

Figure 8. Altitude profile (x1).
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Figure 9. Velocity profile (x2).

Figure 10. Mass (x3) profile.

Figure 11. Thrust profile (u).

7 Conclusions

In this paper a new strategy for the dynamic up-

dating of the population size using the Differential

Evolution algorithm was presented for dealing with

optimization problems. This methodology permits

the reduction of the population size during the evo-

lutionary process and, as a consequence, a reduction

of the number of objective function evaluations. It

was shown that the proposed methodology can be

easily incorporated to the Differential Evolution al-

gorithm. The methodology was used to solve sin-

gular optimal control problems with different lev-

els of complexity, where the original continuous

control trajectory is approximated by linear func-

tions on time intervals. The results showed that the

proposed algorithm represents an interesting alter-

native for the treatment of optimization problems,

once the same solution quality achieved by other

techniques can be obtained by using a smaller num-

ber of generations. Further works will be dedicated

to approaches related to dynamically updating the

parameters and mutation strategies of the Differen-

tial Evolution Algorithm, as presented in [39, 40].
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