PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limit analysis of geometrically hardening composite steel-concrete systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Stany graniczne geometrycznie wzmacniających się konstrukcji zespolonych
Języki publikacji
EN
Abstrakty
EN
The paper considers some results of creating load-carrying composite systems that have uprated strength, rigidity and safety, and therefore are called geometrically (self-) hardening systems. The optimization mathematic models of structures as discrete mechanical systems withstanding dead load, monotonic or low cyclic static and kinematic actions are proposed. To find limit parameters of these actions the extreme energetic principle is suggested what result in the bilevel mathematic programming problem statement. The limit parameters of load actions are found on the first level of optimization. On the second level the power of the constant load with equilibrium preloading is maximized and/or system cost is minimized. The examples of using the proposed methods are presented and geometrically hardening composite steel-concrete system are taken into account.
PL
W pracy przedstawiono sposoby projektowania konstrukcji, które ze względu na swoją geometrię oraz topologię posiadają podwyższoną nośność, sztywność i bezpieczeństwo. Systemy takie nazwano geometrycznie (samo-) wzmacniającymi się. Zaproponowano optymalizacyjne modele matematyczne konstrukcji jako dyskretne systemy mechaniczne będące pod obciążeniem stałym, zmiennym monotoniczne lub niskocyklowym, statycznym lub kinematycznym. Dla znalezienia granicznych parametrów obciążeń wprowadzona została ekstremalna zasada energetyczna, przedstawiona jako problem dwupoziomowego programowania matematycznego. Graniczne parametry obciążeń szukane są na pierwszym poziomie optymalizacji. Na drugim poziomie minimalizowany jest koszt systemu i/lub maksymalizowana jest moc stałego równoważącego obciążenia z dociążeniem. Ponadto w pracy przeanalizowano numerycznie i analitycznie zachowanie konstrukcji geometrycznie wzmacniających się na przykładzie konstrukcji zespolonych stalowo-betonowych. Pierwszy przykład dotyczy konstrukcji belkowo-prętowej z podciągiem, belkę stanowi stalowy dwuteownik połączony z płytą betonową. Analizowano cztery przypadki skratownia podciągu wykonanego z prętów stalowych o przekroju kołowym i znacznej sztywności słupów. Pokazano znaczący wpływ orientacji słupów podciągu na nośność konstrukcji. Drugi przykład numeryczny wykonano dla uproszczonego modelu wiaduktu WD-22 znajdującego się na węźle „Pyrzyce” na drodze ekspresowej S3. Dla obu przykładów realizowano dwa przypadki obciążania konstrukcji, bez uwzględnienia i z uwzględnieniem stałego równoważącego obciążenia z dociążeniem. Obliczenia numeryczne wykonano w środowisku systemu Abaqus/Standard stosując analizę geometrycznie nieliniową (Nlgeom). W obliczeniach przyjęto następujące modele materiałowe: dla belki żelbetowej - idealnie sprężysto-plastyczny natomiast dla prętów stalowych podciągu - sprężysty. Celem analizy była obserwacja zachowania się konstrukcji po osiągnięciu obciążenia granicznego dla różnych przypadków skratowania oraz oszacowanie nośności granicznej dla konstrukcji bez stałego obciążenia oraz ze stałym obciążeniem i dociążeniem. Na podstawie przeprowadzonych obliczeń numerycznych i analitycznych stwierdzono, że w różnych konstrukcjach o pewnych wymiarach skratowania obserwuje się wzmocnienie geometryczne po osiągnięciu przez system nośności granicznej. Uwzględnienie obciążenia stałego równoważącego oraz dodatkowego dociążenia powoduje wzrost nośności granicznej konstrukcji geometrycznie wzmacniających się o około 20 %.
Rocznik
Tom
Strony
5--23
Opis fizyczny
Bibliogr. 32 poz., fot., rys., wykr.
Twórcy
autor
  • University of Zielona Gora, Institute of Building Engineering, Poland
autor
  • University of Zielona Gora, Institute of Building Engineering, Poland
Bibliografia
  • 1. Aliawdin, P. W.: Limit analysis of structures under variable loads, Minsk, Technoprint 2005. (in Russian).
  • 2. Aliawdin, P., Silicka, E.: Limit analysis and failure of load-carrying systems, Selected papers of the 9th International Conference on Modern Building Materials, Structures and Techniques, 16–18 May 2007, Vilnius, Lithuania III (2007) 881-886.
  • 3. Alawdin P., Urbańska K.: Limit analysis of geometrically hardening rod systems using bilevel programming, in: 11th International Scientific Conference on Modern Building Materials, Structures and Techniques, Vilnius, Lithuania 2013, 89-98.
  • 4. Maier, G.: A shakedown matrix theory allowing for workhardening and second-order geometric effects, in: Foundations in plasticity, 1, Ed. A. Sawczuk, Noordhoff, 1973, 417-433.
  • 5. Alyavdin, P.W.: A new class of effective carrying structures: Analysis and synthesis, Architecture and Civil Engineering of Belarus, 5-6, (1994) 6-10 (in Russian).
  • 6. Alyavdin, P.: Optimization problem for a new class of effective carrying structures, Proc. of the Second World Congress of Structural and Multidisciplinary Optimization (WCSMO-2), 26-30 May 1997 Zakopane, Poland, 2, 905-910.
  • 7. Voyevodin, A.A.: Prestressed systems of structures elements. Strojizdat 1989. (in Russian).
  • 8. König, J.A.: Shakedown of elastic-plastic structures. PWN, Elsevier 1987.
  • 9. Čyras, A., Borkowski, A., Karkauskas, R.: Theory and methods of optimization of rigid-plastic systems. Technika, Vilnius 2004.
  • 10. Atkočiūnas, J.J.: Analysis of elasic-plastic systems at repeated loadings Publishing house of a science and encyclopedias 1994. (in Russian).
  • 11. Alyavdin, P., Simbirkin, V.: Analysis of RC elements under monotonic and cyclic loadings taking into account nonsmooth stress-strain diagrams, Proc. of International Conference on Nonsmooth/nonconvex mechanics with applications in engineering, Thessaloniki, Greece, 2002, 401-408.
  • 12. Gao David Yang, Ogden Ray W.: Stavroulakis Georgios, E., Nonsmooth/Nonconvex mechanics: Modeling, analysis and numerical methods / Nonconvex optimization and its applications, 50, Kluwer Academic Publishers, 2001.
  • 13. Gawecki, A., Kruger, P.: Slackened systems under variable loads, in: Inelastic Behaviour of Structures under Variable Loads, Z. Mróz et al. (Eds.). Kluwer Academic Publishers 1995, 399-417.
  • 14. Telega, J.J.: On shakedown theorems in the presence of Signorini conditions and frictions, in: Inelastic Behaviour of Structures under Variable Loads, Z. Mróz et al. (Eds.). Kluwer Academic Publishers 1995, 183-202.
  • 15. ABAQUS User's Manual. 2010. Version 6.10, Hibbitt, Karlson and Sorensen, Jnc.
  • 16. Cap, F.E.: Mathematical methods in physics and engineering with MATHEMATICA. A CRC Press Company, 2003.
  • 17. Dem’anov, V.F., Stavroulakis, G.E., Polyakova, L.N., Panagiotopoulos, P.D.: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics / Nonconvex Optimization and its Applications, 10, Kluwer Academic Publishers, 1996.
  • 18. Kuznetsov, E.N.: Underconstrained Structural Systems. Mechanical Engineering Series, XIII, Springer Verlag 1991.
  • 19. Motro, R.: Tensegrity: Structural Systems for the Future. Kogan Page, Limited 2003.
  • 20. Murakami, H.: Static and dynamic analysis of tensegrity structures. Part 1. Nonlinear equations motion. Part 2. Quasi-static analysis, International Journal of Solids and Structures, 38 (20), 2001, 3599–3613; 3615–3629.
  • 21. Gorokhovik, V.V.: Convex an nonsmooth problems of vector optimization, Navuka i Tekhnika 1990. (in Russian).
  • 22. Eichfelder, G.: Adaptive scalarization methods in multiobjective optimization, Springer 2008.
  • 23. Dempe, S.: Foundations of bilevel programming, Kluwer Academic Publishers, 2002.
  • 24. Demyanov, V., Facchinei, F.: Two-level optimization problems and penalty functions, Russian Math. (Izv. VUZ) 47(12) 2003, 46-58. (in Russian).
  • 25. Shimizu, K., Ishizuka, Yo., Bard, J.F.: Non-differentiable and two-level mathematical programming, Kluwer Academic Publishers 1997.
  • 26. Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: Numerical solution of a class of bilevel programming problems, Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. 13(2) (2010), 201–212 (in Russian).
  • 27. Malyshev, A.V., Strekalovsky, A.S.: About interconnection of some problems of bilevel and nonlinear optimization, Russian Math. (Izv. VUZ) 4, 2011, 99-103. (in Russian).
  • 28. Sołowczuk, A. (Ed.): Express road S3 on the itinerary Szczecin-Gorzów Wlkp., Publishing house Comgraph Anna Jadczuk, Szczecin 2010. (in Polish).
  • 29. Sołowczuk, A., Matecki, K.: Selected road structures over the S3 express road, Engineering and Construction, 5 (2011), 284-287 (in Polish).
  • 30. Project documentation of structures over the S3 express road on the itinerary Szczecin-Gorzów Wlkp., 2011. Contract engineer office DHV, Poland, Sp. z.o.o. (in Polish).
  • 31. Optimization with Multivalued Mappings: Theory, Applications and Algorithms / Optimization and Its Applications, 2, XII, Dempe S., Kalashnikov V. (Eds.), Springer 2006, p. 276.
  • 32. Krużelecki, J., Trybuła, D.: Optimal axial tension and internal pressure stabilizing post-buckling path for cylindrical shells under torsion, Journal of theoretical and applied mechanics, Warsaw, 48, 3 (2010), 645-658.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7541ec6d-8e6f-4ba4-8356-b328872757ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.