PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Manufacturing of Composite Materials in the Matrix of Modified Phenol-Formaldehyde Resins

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work develops the method of obtaining new composite materials based on novolac phenol-formaldehyde resin with improved adhesion properties and heat resistance. The composites were obtained by chemical modification of phenol-formaldehyde resin by epoxy resin and polyvinylpyrrolidone during the hardening of the composition. The mechanism of resins modification and hardening has been determined. It is shown that due to the modification, the heat resistance and adhesive strength of the obtained enamels and coatings have significantly increased. In particular, with the polyvinylpyrrolidone content from 0.5 to 1 wt% and epoxy resin from 25 to 50 wt%, the adhesive strength of the compositions increases 5-7 times.
Twórcy
  • Department of Chemical Technology of Plastics Processing, Lviv Polytechnic National University, Bandera 12 St., 79013 Lviv, Ukraine
  • Department of Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36 St., 20-618 Lublin, Poland
  • Department of Mechanical Engineering Technologies and Materials, Faculty of Mechanical Engineering Technical University of Košice, Masiarska 74 St., 04001 Košice, Slovakia
autor
  • Department of Mechanical Engineering Technologies and Materials, Faculty of Mechanical Engineering Technical University of Košice, Masiarska 74 St., 04001 Košice, Slovakia
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, M. Skłodowska-Curie 55 St., 87-100 Toruń, Poland
Bibliografia
  • 1. Auad M.L., Nutt S.R., Pettarin V., Frontini P.M. Synthesis and properties of epoxy-phenolic clay nanocomposites. eXPRESS Polymer Letters. 2007; 1(9): 629–639.
  • 2. Chen S., Lv S., Hou G., Huo L., Gao J. Mechanical and thermal properties of biphenyldiol formaldehyde resin/gallic acid epoxy composites enhanced by graphene oxide. Journal of Applied Polymer Science. 2015; 132(41): 42637.
  • 3. Grytsenko O., Gajdoš I., Spišák E., Krasinskyi V., Suberlyak O. Novel Ni/pHEMA-gr-PVP composites obtained by polymerization with simultaneous metal deposition: Structure and properties. Materials. 2019; 12: 1956.
  • 4. Ismail A.S., Jawaid M., Hamid N.H., Yahaya R., Hassan A. Mechanical and Morphological Properties of Bio-Phenolic/Epoxy Polymer Blends. Molecules. 2021; 26(4): 773.
  • 5. Jachowicz T., Gajdoš I., Krasinskyi V. Research on the content and filler type on injection shrinkage. Advances in Science and Technology Research Journal. 2014; 8(23): 6-13.
  • 6. Kirci B. & Güner A. Effect of phenolic cosolutes on the main parameters, phase separation and theta temperature of dilute aqueous poly(N-vinyl-2-pyrrolidone) solutions. European Polymer Journal. 2001; 37(2): 361–365.
  • 7. Krasinskyi V., Suberlyak O., Zemke V., Klym Y., Gaidos I. The role of polyvinylpyrrolidone in the formation of nanocomposites based on acompatible polycaproamide and polypropylene. Chemistry & Chemical Technology. 2019; 13: 59–63.
  • 8. Kuo S.W. & Chang F.C. Studies of Miscibility Behavior and Hydrogen Bonding in Blends of Poly(vinylphenol) and Poly(vinylpyrrolidone). Macromolecules. 2001; 34(15): 5224–5228.
  • 9. Mansouri N.E., Yuan Q., Huang F. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioResources. 2011; 6(3): 2647–2662.
  • 10. Motawie A.M. & Sadek E.M. Adhesives and coatings based on phenolic/epoxy resins. Polymers for Advanced Technologies. 1999; 10: 223–228.
  • 11. Paulik F., Bessenyey-Paulik E., Walther-Paulik K. Differential thermal analysis under quasi-isothermal, quasi-isobaric conditions (Q-DTA). Thermochimica Acta, 2005; 430(1-2): 59–65.
  • 12. Pilato L. Phenolic resins: 100 Years and still going strong. Reactive and Functional Polymers. 2013; 73(2): 270–277.
  • 13. Soltan-Dehghan M. & Sharifi-Sanjani N. Prepara tion and Characterization of Phenolic Resin/Montmorillonite Nanocomposite. Iranian Journal of Polymer Science and Technology. 2012; 25(2): 83–90.
  • 14. Suberlyak O., Krasinskiy V., Sikora J., Krzyzak A. Ammonia-free, low-toxic press-materials with improved electroinsulating properties based on modified novolak phenol-formaldehyde resin. Chemistry & Chemical Technology. 2012; 6: 199–202.
  • 15. Szala M., Świetlicki A., Sofińska-Chmiel W. Cavitation erosion of electrostatic spray polyester coatings with different surface finish. Bulletin of the polish academy of sciences. Technical sciences. 2021; 69(4): e137519.
  • 16. Varlan K.E., Chervakov D.O., Sverdlikovska O.S., Zahinayko E.C., Severenchuk I.M. Modified phenolic resins and their compatibility with the components of epoxy-phenolic protective coatings. Voprosy Khimii i Khimicheskoi Tekhnologii. 2020; 1: 10–17.
  • 17. Wen S. & Ma J. Synergistic effect of polyvinylpyrrolidone noncovalently modified graphene and epoxy resin in anticorrosion application. High Performance Polymers. 2020; 33(2): 146-164.
  • 18. Zhang X., Zhang L., Zhang D., Liu S., Wei D., Liu F. Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020; 593: 124581.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75367113-0d8f-4516-8c53-a46ae48f51cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.