Identyfikatory
Warianty tytułu
Funkcje Trefftza dla problemów niestacjonarnych
Języki publikacji
Abstrakty
Different types of Trefftz functions for non-stationary linear and weakly nonlinear differentia equations are presented. The Trefftz methods are defined and briefly described. Certain results for non-stationary problems of heat conduction (among others boundary temperature identification and thermal diffusivity estimation), for beam vibration, for thermoelasticity and for the wave equation (direct and inverse problem of membrane vibrations) are shown. In many cases, the FEM with Trefftz functions (FEMT) as probe functions is applied. Three kinds of FEMT are tested for direct and inverse non-stationary problems. Examples of the making use of T-functions for solving inverse problems and smoothing inaccurate input data are discussed.
W pracy przedstawione są rożne rodzaje funkcji Trefftza dla niestacjonarnych liniowych i słabo nieliniowych równań różniczkowych. Zdefiniowane są i krotko opisane metody Trefftza. Prezentowane są niektóre wyniki dla niestacjonarnych problemów przewodzenia ciepła (m.in. identyfikacja temperatury na brzegu oraz estymacja dyfuzyjności termicznej), drgań belki oraz dla termosprężystości i równania falowego (prosty i odwrotny problem drgań membrany). W pracy pokazany jest również przykład zastosowania metody elementów skończonych z funkcjami Trefftza (MEST) jako funkcjami próbnymi. Trzy rodzaje MEST są testowane na prostych i odwrotnych problemach niestacjonarnych. W pracy omawiane są również przykłady zastosowania T-funkcji w rozwiązywaniu problemów odwrotnych w połączeniu z wygładzaniem niedokładnych danych wejściowych.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
251--264
Opis fizyczny
Bibliogr. 36 poz., tab.
Twórcy
autor
- Kielce University of Technology, Department of Management and Computer Modeling, Kielce, Poland
autor
- Kielce University of Technology, Department of Management and Computer Modeling, Kielce, Poland
Bibliografia
- 1. Al-Khatib M.J., Grysa K., Maciąg A., 2008, The method of solving polynomials in the beam vibration problems, Journal of Theoretical and Appled Mechanics, 46, 347-366
- 2. Ciałkowski M.J., Frąckowiak A., 2000, Heat Functions and Their Applications to solving the Heat Conduction and Mechanical Problems, Wyd. Politechniki Poznańskiej [in Polish]
- 3. Ciałkowski M.J., Frąckowiak A., 2003, The heat functions and related in solving chosen problems of mechanics, Part I – Solving some differential equations with the use of inverse operator, Studia i Materiały, Technika, 3, 7-70, Uniwersytet Zielonogorski
- 4. Ciałkowski M.J., Frąckowiak A., Grysa K., 2007, Physical regularization for inverse problems of stationary heat conduction, Journal of Inverse and Ill-Posed Problems, 15, 347-364
- 5. Ciałkowski M.J., Grysa K., 2010, Trefftz method in solving the inverse problems, Journal of Inverse and Ill-Posed Problems, 18, 595-616
- 6. Ciałkowski M.J., Jarosławski M., 2003, The use of symbolic computation for generating of wave equations solution, Zeszyty Naukowe Politechniki Poznańskiej, M. R. i T., 56, 115-140 [in Polish]
- 7. Futakiewicz S., 1999, Method of heat functions to solving direct and inverse problems of heat conduction, PHD Theses, Politechnika Poznańska [in Polish]
- 8. Grysa K., 2003,Heat polynomials and their applications, Archives of Thermodynamics, 24, 107-124
- 9. Grysa K., 2010, Trefftz Functions and Their Application in Solving Inverse Problems, Wyd. Politechniki Świętokrzyskiej [in Polish]
- 10. Grysa K., Hożejowski L., Marczewski W., Sendek-Matysiak E., 2009, Thermal diffusivity estimation from temperature measurements with a use of a thermal probe, Proc. Int. Conf. Experimental Fluid Mechanics, 63-71
- 11. Grysa K., Leśniewska R., 2010, Different finite element approaches for inverse heat conduction problems, Inverse Problems in Science and Engineering, 18, 3-17
- 12. Grysa K., Leśniewska R., Maciąg A., 2008, Energetic approach to direct and inverse heat conduction problems with Trefftz functions used in FEM, Comp. Ass. Mech. Eng. Sci., 15, 171-182
- 13. Grysa K., Maciąg A., 2011, Solving direct and inverse thermoelasticity problems by means of Trefftz base functions for finite element method, Journal of Thermal Stresses, 34, 1-16
- 14. Grysa K., Maciąg A., Maciejewska B., 2009, Wave polynomials as base functions of FEM in problems of elastokinetics, Proc. of the 7th EUROMECH Solid Mech. Conf., 191-192
- 15. Gurgeon H., Herrera I., 1981, Boundary methods. C-complete systems for biharmonic equations, [In:] Boundary Element Methods, Brebbia C.A. (Edit.), New York, CML Publ. Springer, 431-441
- 16. Herrera I., 1984, Boundary Methods. An Algebraic Theory, Boston, Pitman Advanced Publishing Program
- 17. Herrera I., 2000, Trefftz method: A general theory, Numerical Methods for Partial Differential Equations, 16, 561-580
- 18. Herrera I., Gurgeon H., 1982, Boundary methods, c-complete systems for Stokes problem, Computer Methods in Applied Mechanics and Engineering 30, 25-41
- 19. Herrera I., Sabina F., 1978, Connectivity as an alternative to boundary integral equations, Construction of Bases Appl. Math. Phys. Sci., 75, 2059-2063
- 20. Hożejowski L., 1999, Heat polynomials and their application in direct and inverse problems od heat conduction, PHD Theses, Politechnika Świętokrzyska [in Polish]
- 21. Jirouˇsek J., Teodorescu P., 1982, Large finite elements method for the solution of problems in the theory of elasticity, Computers and Structures, 15, 575-587
- 22. Kita E., Kamiya N., 1995, Trefftz method: an overview, Advances in Engineering Software, 24, 3-12
- 23. Li Z.C., Lu T.T., Huang H.T., Cheng A.H.-D., 2007, Trefftz, collocation, and other boundary methods – a comparison, Numerical Methods for Partial Differential Equations, 23, 93-144
- 24. Liu R.-F., Yeih W., Kuo S.-R., Chen Y.-W., 2006, Indirect T-Trefftz and F-Trefftz methods for solving boundary value problem of Poisson equation, Journal of the Chinese Institute of Industrial Engineers, 29, 989-1006
- 25. Maciąg A., 2007, Wave polynomials in elasticity problems, Eng. Trans., 55, 129-153
- 26. Maciąg A., 2009a, The usage of wave polynomials in solving direct and inverse problems for two-dimensional wave equation, International Journal for Numerical Methods in Biomedical Engineering, DOI: 10.1002/cnm.1338
- 27. Maciąg A., 2009b, Trefftz Functions for Chosen Direct and Inverse Problems of Mechanics, Wyd. Politechniki Świętokrzyskiej [in Polish]
- 28. Maciejewska B., 2004, Application of the modified method of finite elements for identification of temperature of a body heated with a moving heat source, Journal of Theoretical and Appled Mechanics, 42, 771-788
- 29. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 2007, Numerical Recipies, The Art of Scientific Computing, Third Ed. Cambridge University Press
- 30. Qin Q.-H., 2000, The Trefftz Finite and Boundary Element Method, Boston: WIT Press, Southampton
- 31. Rakoczy K., 1997, On some class of the parabolic polynomials, Fasciculi Mathematici, 27, 81-93
- 32. Rosenbloom PC, Widder DV., 1956, Expansion in terms of heat polynomials and associated functions, Transactions of the American Mathematical Society, 92, 220-266
- 33. Sendek E., 2007, Investigation of thermal properties of a medium with the use of thermal probe Mupus-Pen, PHD Theses, Politechnika Świętokrzyska [in Polish]
- 34. Spohn T., Seiferlin K., Hagermann A., Knollenberg J., Ball A.J., Banaszkiewicz M., Benkhoff Jo., Gadomski S., Gregorczyk W., Grygorczuk J., Hłond M., Kargl G., Kuhrt E., Komlee N., Krasowski J., Marczewski W., Zarnecki J.C., 2007, Mupus – a thermal and mechanical properties probe for the rosetta lander philae, Space Science Reviews, 128, 339-362
- 35. Trefftz E., 1926, Ein Gegenstueck zum Ritz’schen Verfahren, Proc. 2nd Int. Congress of Applied Mechanics, 131-137
- 36. Zieliński A.P., 1995, On trial functions applied in the generalized Trefftz method, Advances in Engineering Software, 24, 147-155
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-753371b4-ed1c-4a5d-a26e-6d10e982dc60