Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The stability of rock mass is an important safety issue in the process of deep mining, and the dynamic disturbance caused by excavation and blasting is an important factor affecting the stability of rock mass. To deeply understand the mechanical characteristics and damage mechanisms of deep sandstone after local impact disturbance by high prestresses, a self-developed rock disturbance system was used to carry out disturbance followed by a uniaxial compression test (UCT) on the rock samples. The whole process of UCT was monitored utilising acoustic emission (AE) technology, and the particle size and fractal dimension of debris after sandstone failure were analysed to explore its strength-weakening mechanism. The experimental study elucidated the influence mechanism of the coupled action of disturbance frequency f and impact area s on the strength weakening effect of sandstone, i.e., high prestressing force is the prerequisite and dominant factor of rock strength weakening, while the perturbation f and the s accelerate the induced rock damage. The fractal dimension D can be used to quantitatively evaluate the fragmentation characteristics of sandstone disturbed by local impact (between 1.68 and 2.14), and it shows a good linear increasing trend with the increase of local impact disturbance.
Wydawca
Czasopismo
Rocznik
Tom
Strony
63--83
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Liaoning Technical University, College of Civil Engineering, Fuxin 123000, China
autor
- Liaoning Technical University, College of Civil Engineering, Fuxin 123000, China
- Liaoning Key Laboratory of Mine Subsidence Disaster Prevention And Control, Fuxin 123000, China
autor
- Shenyang Jianzhu University, School of Transportation and Geomatics Engineering, Shenyang 110168, China
- Northeastern University, Key Laboratory of the Ministry of Education on Safe Mining of Deep Metal Mines, Shenyang 110819, China
autor
- Liaoning Technical University, College of Civil Engineering, Fuxin 123000, China
autor
- Anhui University of Science and Technology, Anhui Key Laboratory of Mining Construction Engineering, HuaiNan, Anhui, 232001, China
autor
- College of Science, North China Institute of Science & Technology, Yanjiao, 065201, China
Bibliografia
- [1] R .P. Young, D.S. Collins, Seismic studies of rock fracture at the Underground Research Laboratory, Canada. Int.J. Rock. Mech. Min. 38 (6), 787-799 (2001). DOI: https://doi.org/10.1016/S1365-1609(01)00043-0.
- [2] L.M. Dou, Z. Mu, Z. Li, Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China. Int. J. Coal. Sci. Tech. 1 (003), 278-288 (2014).DOI: https://doi.org/10.1007/s40789-014-0044-z.
- [3] C.H. Dowding, C.A. Andersson, Potential for rock bursting and slabbing in deep caverns. Eng. Geol. 22 (3), 265-79 (1986). DOI: https://doi.org/10.1016/0013-7952(86)90028-1.
- [4] C. Li, Y.Q. Hu, T. Meng, P.H. Jin, Z.R. Zhao, C.W. Zhang, Experimental study of the influence of temperature and cooling method on mechanical properties of granite: implication for geothermal mining. Energy. Sci. Eng. 8 (5),1716-1728 (2020). DOI: https://doi.org/10.1002/ese3.627.
- [5] H . Xu, G. Wang, Y.Y. Guo, B. Chang, Y.W. Hu, J.Y. Fan, Theoretical, numerical, and experimental analysis of effective extraction radius of coalbed methane boreholes by a gas seepage model based on defined criteria. Energy Sci. Eng. 8 (3), 880-97 (2020). DOI: https://doi.org/10.1002/ese3.557.
- [6] Z. Zhao, X. Gao, S. Chen, M.Z. Zhang, W. Sun, Coupling model of disk splitting for expansive rock mass in deepstorage considering water infiltration. Energy Sci. Eng. 8 (9), 3200-16 (2020).DOI: https://doi.org/10.1002/ese3.729.
- [7] M. Zheng, S. Li, H. Xu, Z. Liang, X. Lu, Investigation of the rock failure effect on overcoring stress relief test indeep hard rock. B. En. Geol. Environ. 82 (9), 353 (2023).DOI: https://doi.org/10.1007/s10064-023-03377-z.
- [8] C. Zang, M. Chen, G. Zhang, K. Wang, D. Gu, Research on the failure process and stability control technology in a deep roadway: Numerical simulation and field test. Energy Sci. Eng. 8 (7), 2297-2310 (2020).DOI: https://doi.org/10.1002/ese3.664.
- [9] S. Gómez, J.A. Sanchidrián, P. Segarra, Near-field vibration from blasting and rock damage prediction with afull-field solution. Int. J. Rock. Mechanic. Min. 134, 104357 (2020).DOI: https://doi.org/10.1016/j.ijrmms.2020.104357.
- [10] C.S. Ma, W.Z. Chen, X.J.Tan, H.M. Tian, J.P. Yang, J.X. Yu, Novel rockburst criterion based on the TBM tunnel construction of the Neelum–Jhelum (NJ) hydroelectric project in Pakistan. Tunn. Undergr. Sp. Tech. 81, 391-402(2018). DOI: https://doi.org/10.1016/j.tust.2018.06.032.
- [11] X . Li, Z. Zhou, T.S. Lok, L. Hong, T. Yin, Innovative testing technique of rock subjected to coupled static and dynamic loads. Int. J. Rock. Mechanic. Min. 45 (5), 739-748 (2008). DOI: https://doi.org/10.1016/j.ijrmms.2007.08.013.
- [12] F . Gong, X. Li, X. Liu, J. Zhao, Experimental study of dynamic characteristics of sandstone under one-dimensional coupled static and dynamic loads. Chi. J. Rock. Mech. Eng. 29 (10), 2076-2085 (2010).DOI: https://doi.org/10.15407/fm25.01.122.
- [13] D. Luo, G. Su, G. Zhang, True-triaxial experimental study on mechanical behaviours and acoustic emission characteristics of dynamically induced rock failure. Rock. Mech. Rock. Eng. 53 (3), 1205-1223 (2020).DOI: https://doi.org/10.1007/s00603-019-01970-x.
- [14] Z. Zhou, X. Cai, X. Li, W. Cao, X. Du, Dynamic response and energy evolution of sandstone under coupled static–dynamic compression: insights from experimental study into deep rock engineering applications. Rock. Mech. Rock. Eng. 53, 1305-1331 (2020). DOI: https://doi.org/10.1007/s00603-019-01980-9.
- [15] S.H. Li, W.C. Zhu, L.L. Niu, M. Yu, C.F. Chen, Dynamic characteristics of green sandstone subjected to repetitive impact loading: phenomena and mechanisms. Rock. Mech. Rock. Eng. 51, 1921-1936 (2018).DOI: https://doi.org/10.1007/s00603-018-1449-6.
- [16] Y. Xia, H. Zhou, C. Zhang, S. He, Y. Gao, P. Wang, The evaluation of rock brittleness and its application: a review study. Eur. J. Environ. Ci. Eng. 26 (1), 239-279 (2022).DOI: https://doi.org/10.1080/19648189.2019.1655485.
- [17] Z. Wang, L. Dou, G. Wang, J. He, J. Hu, Failure Mechanism of Anchored Roadway Surrounding Rocks under Near-Field Dynamic Disturbance. KSCE. J. Civ. Eng. 2024, 1-15 (2024).DOI: https://doi.org/10.1007/s12205-024-1813-x.
- [18] Y. Xi, H. Wang, J. Li, W. Dong, H. Li, B. Guo, Experimental comparison of mechanical properties and fractal characteristics of geothermal reservoir rocks after different cooling treatments. Energy Rep. 8, 5158-5176 (2022).DOI: https://doi.org/10.1016/j.egyr.2022.03.207.
- [19] H . Li, X. Li, J. Fu, N. Zhu, D. Chen, Y. Wang, Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load. Constr. Build. Mater. 399, 132599 (2023).DOI: https://doi.org/10.1016/j.conbuildmat.2023.132599.
- [20] J. Hao, L. Qiao, Q. Li, Study on cross-scale pores fractal characteristics of granite after high temperature and rockfailure precursor under uniaxial compression. Powder Technol. 401, 117330 (2022).DOI: https://doi.org/10.1016/j.powtec.2022.117330.
- [21] Y. Wang, C.H. Li, H. Liu, Fracture failure analysis of freeze–thawed granite containing natural fracture underuniaxial multi-level cyclic loads. Theor. Appl. Fract. Mec. 110, 102782 (2020).DOI: https://doi.org/10.1016/j.tafmec.2020.102782.
- [22] Y. Lai, K. Zhao, Z. He, X. Yu, Y. Yan, Q. Li, Y. Zhou, Fractal characteristics of rocks and mesoscopic fractures at different loading rates. Geo. Energy Environ. 33, 100431 (2023).DOI: https://doi.org/10.1016/j.gete.2022.100431.
- [23] Y. Wang, R. Liu, H. Ji, S. Li, L. Yu, X. Feng, Correlating mechanical properties to fractal dimensions of shalesunder uniaxial compression tests. Environ. Earth Sci. 82 (1), 2 (2023).DOI: https://doi.org/10.1007/s12665-022-10642-z.
- [24] X .T. Feng, B. Haimson, X. Li, C. Chang, X. Ma, X. Zhang, K. Suzuki, ISRM suggested method: determining deformation and failure characteristics of rocks subjected to true triaxial compression. Rock Mech. Rock Eng. 52,2011-2020 (2019). DOI: https://doi.org/10.1007/s00603-019-01782-z.
- [25] C.E. Fairhurst, J.A. Hudson, Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int. J. Rock Mechanic. Min. 36 (3), 279-289 (1999).DOI: https://doi.org/10.1007/978-3-319-07713-0_15.
- [26] E. ISRM, Rock characterization, testing and monitoring – ISRM suggested methods. Suggest. methods Quant. Descr. discontinuities rock masses, 1891, 3-52 (1981).
- [27] T. Zhao, P. Zhang, Y. Xiao, W. Guo, Y. Zhang, X. Zhang, Master crack types and typical acoustic emission characteristics during rock failure. Int. J. Coal Sci. Tech. 10 (1), 2 (2023).DOI: https://doi.org/10.1007/s40789-022-00562-5.
- [28] M. Jia, K. Qian, K. Yu, Acoustic Emission Characteristics and Failure Patterns of Basalt Fiber and Basalt Textile Reinforced Concrete under Flexural Load. J. Nat. Fibers 19 (16), 14725-14743 (2022).DOI: https://doi.org/10.1080/15440478.2022.2068728.
- [29] C.H. Ren, J. Yu, X.Y. Liu, Z.Q. Zhang, Y.Y. Cai, Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking. Int. J. Min. Sci. Tech. 32 (5), 1153-1165 (2022).DOI: https://doi.org/10.1016/j.ijmst.2022.06.010.
- [30] L. Gori, S.S. Penna, R.L. da Silva Pitangueira, Discontinuous failure in micropolar elastic-degrading models. Int.J. Damage Mech. 27 (10), 1482-1515 (2018). DOI: https://doi.org/10.1177/1056789517731137.
- [31] D. Krajcinovic, M.A.G Silva, Statistical aspects of the continuous damage theory. Int. J. Solids Struct. 18 (7),551-562 (1982). DOI: https://doi.org/10.1016/0020-7683(82)90039-7.
- [32] X . Wang, J. Lai, S. He, R.S. Garnes, Y. Zhang, Karst geology and mitigation measures for hazards during metro system construction in Wuhan, China. Nat. Hazards 103, 2905-2927 (2020).DOI: https://doi.org/10.1007/s11069-020-04108-3.
- [33] Y. Gao, D. Lan, S. Yang, P. Hou, Y. Wang, F. Ding, The acoustic emission behavior and its fractal characteristics of the sandstone under the disturbance stress paths. Rock Mech. Rock Eng. 56 (8), 5487-5511 (2023).DOI: https://doi.org/10.1007/s00603-023-03342-y.
- [34] Z. Zhao, H. Liu, Q. Ma, J. Shang, Micro-macro damage, deterioration and cracking of heterogeneous composite rock masses with non-penetrating cracks under uniaxial compression. Theor. Appl. Fract. Mec. 125, 103919 (2023).DOI: https://doi.org/10.1016/j.tafmec.2023.103919.
- [35] F . Zhao, Y. Li, Z. Ye, Y. Fan, S. Zhang, H. Wang, Y. Liu, Research on acoustic emission and electromagnetic emission characteristics of rock fragmentation at different loading rates. Shock. Vib. 2018, 4680879 (2018).DOI: https://doi.org/10.1155/2018/4680879.
- [36] Y. Lai, K. Zhao, Z. He, X. Yu, Y. Yan, Q. Li, Y. Zhou, Fractal characteristics of rocks and mesoscopic fractures at different loading rates. Geomech. Energy Environ. 33, 100431 (2023).DOI: https://doi.org/10.1016/j.gete.2022.100431.
- [37] S. Li, D. Yang, Z. Huang, Q. Gu, K. Zhao, Acoustic emission characteristics and failure mode analysis of rockfailure under complex stress state. Theor. Appl. Fract. Mec. 122, 103666 (2022).DOI: https://doi.org/10.1016/j.tafmec.2022.103666.
- [38] M. Hu, Z. Zhang, Y. Yin, B. Huang, S. Yu, Y. Liao, Study on strength weakening of carbonate rocks with waterlevel fluctuating in Wuxia of Three Gorges Reservoir area. J. Eng. Geo. 31 (5), 1615-1627 (2023).DOI: https://doi.org/10.1109/mace.2011.5987758.
- [39] P. Deng, Q. Liu, H. Lu, FDEM numerical study on the mechanical characteristics and failure behavior of heterogeneous rock based on the Weibull distribution of mechanical parameters. Comput. Geotech. 154, 105138 (2023).DOI: https://doi.org/10.1016/j.compgeo.2022.105138.
- [40] Z. Liu, J. Shao, W. Xu, Y. Meng, Prediction of rock burst classification using the technique of cloud models with attribution weight. Nat. Hazards 68, 549-568 (2013). DOI: https://doi.org/10.1007/s11069-013-0635-9.
- [41] ASTM D6913/D6913M-17, Standard test methods for particle-size distribution (gradation) of soils using sieveanalysis. ASTM Int. (2017).
- [42] K. Zeng, H. Liu, Effect of particle size distributions on the mechanical behavior and particle breakage of coralsands. Granul. Matter. 25 (3), 44 (2023). DOI: https://doi.org/10.1007/s10035-023-01334-x.
- [43] X .Y. Tian, F.J. Zhao, W.J. Wang, B. Chen, Y.J. Ma, B.J. Fan, Study on energy evolution and fractal characteristics of sandstone with different fracture dip angles under uniaxial compression. Sci. Rep.-UK. 14 (1), 10464 (2024).DOI: https://doi.org/10.1038/s41598-024-60902-0.
- [44] L. Li, W. Wu, M.H. El Naggar, G. Mei, R. Liang, Characterization of a jointed rock mass based on fractal geometry theory. B. Eng. Geol. Environ. 78, 6101-6110 (2019). DOI: https://doi.org/10.1007/s10064-019-01526-x.
- [45] X .F. Li, H.B. Li, Q.B. Zhang, J.L. Jiang, J. Zhao, Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law. Eng. Fract. Mech. 199, 739-759 (2018).DOI: https://doi.org/10.1016/j.engfracmech.2018.06.024.
- [46] L. Hu, Z. Zhang, X. Liang, C. Tang, Fractal Analysis of Fragmentation Distribution of Rockbursts Induced by Low-Frequency Seismic Disturbances. Adv. Civ. Eng. 2021, 1-14 (2021).DOI: https://doi.org/10.1155/2021/6679891.
- [47] T. Cheng, M. He, H. Li, D. Liu, Y. Qiao, J. Hu, Experimental investigation on the influence of a single structural plane on rockburst. Tunn. Undergr. Sp. Tech. 132, 104914 (2023).DOI: https://doi.org/10.1016/j.tust.2022.104914.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7532dfda-fb80-46f9-b909-56b5e3392a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.