Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the increase in the share, with variable production of renewable energy sources in power systems, many studies and expert opinions have appeared in scientific research and the energy market to determine their optimal technological and locational cooperation. Modern Portfolio Theory (MPT) has often been applied in this context. However, some key aspects important in energy planning have not been included in these analyses. This article presents the use of the Markowitz model (Modern Portfolio Theory) in analyzing the hybrid co-option of selected energy sources, assuming two approaches that take into account gross potential and constraints imposed by technological capabilities. The goal is to determine the optimal value of the participation rate of wind farms and solar farms in the energy production co-op assuming the minimization of risk. The value of risk here is determined by a measure of dispersion for the delivery of a certain amount of energy. The results of the analysis are the determination of a map of optimal values of participation factors between the components of the hybrid energy complex for the area of Poland. Analyses were made for gross potential, showing the possibilities of maximum energy production, and for potential limited by technological possibilities. The study used data characterizing the potential of wind energy and solar energy and temperature. The data used in the analyses are publicly available for research purposes. The analyses were supported by graphs and commentary.
Czasopismo
Rocznik
Tom
Strony
art. no. e2024009
Opis fizyczny
Bibliogr. 19 poz., il., tab., wykr., wz.
Twórcy
autor
- Department of Geoengineering and Water Management, Faculty of Environmental and Energy Engineering, Cracow University of Technology
Bibliografia
- 1. Castro G.M., Klöckl C., Regner P., Schmidt J., Pereira A.O.Jr. (2022). Improvements to Modern Portfolio Theory based models applied to electricity systems. Energy Economics, Vol. 111, 1-16.
- 2. Ceran B., Szczerbowski, R. (2017). Analiza techniczno-ekonomiczna instalacji fotowoltaicznej. Zeszyty Naukowe, Instytut Gospodarki Surowcami Mineralnymi i Energią PAN 98, 15–26.
- 3. Chaves-Schwinteck, P. (2013). The Modern Portfolio Theory Applied to Wind Farm Investments, Oldenburg: Universität Oldenburg. PhD Thesis, Carl von Ossietzky.
- 4. Cornes R.C., Schrier G., Besselaar E.M., Jones P.D. (2018). An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. JGR Atmospferes.
- 5. Dale M. (2013). A comparative analysis of energy costs of photovoltaic, solar thermal and wind electricity generation technologies, Global Climate & Energy Project. Article in Applied Sciences. Stanford: Stanford University, 1–13.
- 6. DeLlano-Paz F., Cartelle-Barros J.J., Martínez-Fernández P. (2023). Application of modern portfolio theory to the European electricity mix: an assessment of environmentally optimal scenarios. Environment, Development and Sustainability, 26, 15001–15029.
- 7. ECA&D project (online). Retrieved from: https://www.ecad.eu (access: 13.11.2023).
- 8. Fernandez P.M. (2019). An application of the Modern Portfolio Theory to the optimization of the European Union power generation mix from an environmental perspective. PhD Thesis, Universidade da Coruna.
- 9. Garcia C.R., González V., Contreras J., Custodio J.E.S.C. (2017). Applying modern portfolio theory for a dynamic energy portfolio allocation in electricity markets. Electric Power Systems Research 150, 11–23.
- 10. Ec. Europa (online). Retrieved from: https://ec.europa.eu/eurostat/web/main/data/database (access: 2.12.2023).
- 11. Kowalczyk A.M.; Czyża S. (2022). Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS. Energies 15, 6693. https://doi.org/10.3390/en15186693
- 12. Lopez M., Rodriguez N., Iglesias G. (2020). Combined Floating Offshore Wind and Solar PV. Journal of Marine Science and Engineering 8, 576.
- 13. Markowitz H. (1952). Portfolio Selection. The Journal of Finance 7(1), 77–91.
- 14. Nzelibe I.U., Ojediran D.D., Moses M. (2022). Geospatial Assessment and Mapping of Suitable Sites for a Utility-scale Solar PV Farm in Akure South, Ondo State, Nigeria. Geomatics and Environmental Engineering 16(4), 79-101.
- 15. Patel M.R. (1999). Wind and Solar Power Systems, CRC Press LLC. New York: Merchant Marine Academy Kings Point.
- 16. Project UERRA (online). Retrieved from: https://www.uerra.eu (access: 13.11.2023).
- 17. Sharpe W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance 19(3), 425–442.
- 18. Silva A.R., Estanqueiro A. (2022). FromWind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants. Energies 15, 2560.
- 19. Wyrobek J. (2018). Comparative Analysis of Wind Farms Financial Situation in Selected Countries of the European Union in years 2009–2017. Problems of World Agriculture 18(4), 504–514.
Uwagi
1. Section "Environmental Engineering"
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7531c6a9-4a47-44e5-b4ac-bfc89deffd3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.