PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On the use of Global Urban Footprint to the Polish settlement vectordatabase development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urbanization has a far-reaching impact on the environment, economy, politi-cal and social processes. Therefore, understanding the spatial distribution and evolution ofhuman settlements is a key element in planning strategies that ensure the sustainable de-velopment of urban and rural settlements. Accordingly, it is very important to map humansettlements and to monitor the development of cities and villages. Therefore, the problem ofsettlements has found its reflection in the creation of global databases of urban areas. Globalsettlement data have extraordinary value. These data allow us to carry out the quantitativeand qualitative analyses as well as to compare the settlement network at a regional, nationaland global scale. However, the possibility of conducting both spatial and attribute analysesof these data would be even more valuable. The article describes how to prepare raster dataso that they can be implemented into a vector database. It answers the questions whetherit is possible to combine these data with databases available in Poland and what benefits itbrings. It presents the methods of data generalization and the optimization of time and diskspace. As a result of the study, two vector databases with GUF data were developed. Thefirst database resolution is similar to the original (~12 m resolution) database, the seconddatabase contains less detailed (~20 m resolution) data, generalized using mathematicalmorphology. Both databases have been enriched with descriptive data obtained from theNational Geodetic and Cartographic Resource.
Rocznik
Strony
245--260
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Institute of Geodesy and Cartography 27 Modzelewskiego St., Warsaw, Poland
Bibliografia
  • [1] Big Data UN Global Working Group. (2017). Retrieved April 15, 2019, from https://unstats.un.org/bigdata/.
  • [2] Cámara, M. and López, F. (2000). Mathematical Morphology Applied to Raster Generalization of Urban City Block Maps. Cartographica: The International Journal for Geographic Information and Geovisualization, 37(1), 33–48.
  • [3] Ceresola, S., Fusiello, A., Bicego, M., Belussi, A. and Murino, V. (2005). Automatic Updating of Urban Vector Maps. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 1133–1139).
  • [4] Chini, M., Pelich, R., Hostache, R., Matgen, P. and Lopez-Martinez, C. (2018). Towards a 20 m Global Building Map from Sentinel-1 SAR Data. Remote Sensing, 10(11), 1833.
  • [5] Damen, J., van Kreveld, M. and Spaan, B. (2008). High quality building generalization by extending morphological operators. In The 11th ICA Workshop on Generalization and Multiple Representation (pp. 1–12).
  • [6] DESA UN. (2014). Our urbanizing world. Retrieved April 17, 2019, from http://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2014-3.pdf.
  • [7] DESA UN. (2018). The speed of urbanization around the world. Retrieved April 17, 2019, from https://population.un.org/wup/Publications/Files/WUP2018-PopFacts_2018-1.pdf.
  • [8] Dz.U. 2011 nr 279 poz. 1642. Rozporza˛dzenie Ministra Spraw Wewnętrznych i Administracji z dnia 17 listopada 2011 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a tak˙ze standardowych opracowań kartograficznych (2011).
  • [9] Esch, T., Marconcini, M., Felbier, A., Roth, A., Heldens, W., Huber, M., Schwinger, M., Taubenbock, H., Muller, A. and Dech, S. (2013). Urban Footprint Procesor-Fully Automated Processing Chain Generating Settlement Masks From Global Data of the TanDEM-X Mission. IEEE Geoscience and Remote Sensing Letters, 10(6), 1617–1621.
  • [10] Esch, T., Bachofer, F., Heldens,W., Hirner, A., Marconcini, M., Palacios-Lopez, D., Roth, A., Üreyen, S., Zeidler, J., Dech, S. and Gorelick, N. (2018). Where We Live - A Summary of the Achievements and Planned Evolution of the Global Urban Footprint. Remote Sensing, 10(6), 895.
  • [11] Esch, Thomas, Heldens, W., Hirner, A., Keil, M., Marconcini, M., Roth, A., Zeidler, J., Dech, S. and Strano, E. (2017). Breaking new ground in mapping human settlements from space – The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 30–42.
  • [12] Florczyk, A.J., Ferri, S., Syrris, V., Kemper, T., Halkia, M., Soille, P. and Pesaresi, M. (2016). A New European Settlement Map From Optical Remotely Sensed Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 1978–1992.
  • [13] Gamba, P., Stilla, U., Juergens, C. and Maktav, D. (2012). Foreword to the Special Issue on Human Settlement Monitoring Using Multiple Earth Observation Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 1071–1075.
  • [14] Gashi, F. and Nikolli, P. (2017). Developments in Cartographic Generalization. Universal Journal of Geoscience, 5(3), 45–48.
  • [15] Global Urban Footprint. (2012).
  • [16] Karsznia, I. and Leszczuk, M. (2017). Context-dependent buildings generalisation based on mathematical morphology operations. Roczniki Geomatyki XV (July), 187–200.
  • [17] Klotz, M., Kemper, T., Geiß, C., Esch, T. and Taubenböck, H. (2016). How good is the map? A multi-scale cross-comparison framework for global settlement layers: Evidence from Central Europe. Remote Sensing of Environment, 178, 191–212.
  • [18] Klotz, M., Taubenböck, H. and Geiß, C. (2014). Mapping elements at risk from global to local level: the capabilities of remote sensing now and in the past. In Symposium on earthquake and landslide risk in Central Asia and Caucasus: exploiting remote sensing and geo-spatial information management, 29-30 Jan. 2014. Bishkek, Kyrgyz Republic.
  • [19] Li, Z., Yan, H., Ai, T. and Chen, J. (2004). Automated building generalization based on urban morphology and Gestalt theory. International Journal of Geographical Information Science, 18(5), 513–534.
  • [20] Lupa, M., Sarlej,W., Piórkowski, A. and Krawczyk, A. (2013). Using mathematical morphology methods in the process of generalization on spatial databases. Studia Informatica, 34(2B(112)).
  • [21] Mayer, H. (1999). Automatic Object Extraction from Aerial Imagery-A Survey Focusing on Buildings. Computer Vision and Image Understanding, 74(2), 138–149.
  • [22] Melchiorri, M., Florczyk, A.J., Freire, S., Schiavina, M., Pesaresi, M. and Kemper, T. (2018). Unveiling 25 years of planetary urbanization with remote sensing: Perspectives from the global human settlement layer. Remote Sensing, 10(5), 768.
  • [23] Merkens, J.-L., Vafeidis, A., Merkens, J.-L. and Vafeidis, A.T. (2018). Using Information on Settlement Patterns to Improve the Spatial Distribution of Population in Coastal Impact Assessments. Sustainability, 10(9), 3170.
  • [24] Minghini, M., Molinari, M., Brovelli, M.A., See, L. and Fonte, C.C. (2017). Preliminary Assessment of the Global Urban Footprint and the Global Human Settlement Layer for the city of Milan. Proceedings of AGILE 2017 – 20th AGILE International Conference on Geographic Information Science.
  • [25] Mościcka, A. and Kużma, M. (2018). Spatio-Temporal Database of Places Located in the Border Area. ISPRS International Journal of Geo-Information, 7(3), 108.
  • [26] Muck, M., Klotz, M. and Taubenbock, H. (2017). Validation of the DLR Global Urban Footprint in rural areas: A case study for Burkina Faso. In 2017 Joint Urban Remote Sensing Event (JURSE) (pp. 1–4). IEEE.
  • [27] Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., Halkia, M., Kauffmann, M., Kemper, T., Lu, L., Marin-Herrera, M.A., Ouzounis, G.K., Scavazzon, M., Soille, P., Syrris, V. and Zanchetta, L. (2013). A Global Human Settlement Layer From Optical HR/VHR RS Data: Concept and First Results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2102–2131.
  • [28] Politis, P., Corbane, C., Freire, S., Pesaresi, M., Melchiorri, M., Sabo, F., Florczyk, A.J., Esch, T., Zeidler, J. and Schiavina, M. (2019). The Generalised Settlement Area: mapping the Earth surface in the vicinity of built-up areas. International Journal of Digital Earth, 1–16.
  • [29] Potere, D., Schneider, A., Angel, S. and Civco, D. L. (2009). Mapping urban areas on a global scale: which of the eight maps now available is more accurate? International Journal of Remote Sensing, 30(24), 6531–6558.
  • [30] Schneider, A., Friedl, M. A. and Potere, D. (2009). A new map of global urban extent from MODIS satellite data. Environmental Research Letters, 4(4), 044003.
  • [31] Serra, J.P. (1982). Image analysis and mathematical morphology. Academic Press.
  • [32] Soille, P. (1999). Morphological Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • [33] Su, B., Li, Z., Lodwick, G. and Muller, J.-C. (1997). Algebraic models for the aggregation of area features based upon morphological operators. International Journal of Geographical Information Science, 11(3), 233–246.
  • [34] Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A. and Dech, S. (2012). Monitoring urbanization in mega cities from space. Remote Sensing of Environment, 117, 162–176.
  • [35] Wu, H. and Gao, W. (2011). Vector-based Mathematical Morphology. In International Conference on GeoComputation. (Vol. 11, pp. 188–194).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75317cbd-a846-4f54-b5bd-37197ed4cb3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.