PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on Dynamic Recrystallization Models of 21-4N Heat Resistant Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high-temperature deformation process and dynamic recrystallization (DRX) process of 21-4N were investigated under the conditions of the deformation temperature range of 1273~1453K, the strain rate range of 0.01~10s-1 and the deformation degree of 60% (the total deformation is 0.916) by using Gleeble-1500D thermal simulated test machine. The curves of stress-strain (σ – ε) were obtained, and the curves of work hardening rate (θ) and strain (ε) were obtained by taking derivative of σ – ε. The DRX critical strains under different conditions were determined by the curves of work hardening rate (θ – ε), and the DRX critical strain model was established. The peak strains of 21-4N were obtained by the curves of σ – ε, the relationship between peak stress (σp) and critical strain (εc) was determined, and the peak strain model was established. The DRX volume fraction models of 21-4N were established by using Avrami equation. The DRX grain size of 21-4N was calculated by Image Pro Plus 6.0, and its DRX grain size models were established.
Twórcy
autor
  • North China University of Science and Technology, College of Mechanical Engineering, Hebei Tangshan, 063210, China
  • North China University of Science and Technology, College of Mechanical Engineering, Hebei Tangshan, 063210, China
  • University of Science and Technology, Beijing School of Mechanical Engineering, Beijing 100083, China
autor
  • North China University of Science and Technology, College of Mechanical Engineering, Hebei Tangshan, 063210, China
  • University of Science and Technology, Beijing School of Mechanical Engineering, Beijing 100083, China
  • University of Science and Technology Beijing, National Center for Materials Service Safety, Beijing 100083, China
autor
  • North China University of Science and Technology, College of Mechanical Engineering, Hebei Tangshan, 063210, China
autor
  • University of Science and Technology, Beijing School of Mechanical Engineering, Beijing 100083, China
autor
  • The Hong Kong Polytechnic University, Department of Mechanical Engineering, Hung Hom, Kowloon, Hong Kong, China
Bibliografia
  • [1] M.E. Mehtedi, P. Ricci, L. Drudi, S.E. Mohtadi, M. Cabibbo, S. Spigarelli, Mater. Design. 33, 136-144 (2012).
  • [2] H.C. Ji, J.P. Liu, B.Y. Wang, X.F. Tang, J.G. Lin, Y.M. Huo, J. Alloy Compd. 693, 674-687 (2017).
  • [3] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, J.D. Juul, M.E. Kassner, W.E. King, T.R. Mcnelley, H.J. Mcqueen, A.D. Rollett, Mat. Sci. Eng. A. 238, 219-274 (1997).
  • [4] R.W.K. Honeycombe, R.W. Pethen, J. Less-Com. Metals. 28 (2), 201-212 (1972).
  • [5] S.L. Wang, M.X. Zhang, H.C. Wu, B. Yang, Mater. Charact. 118, 92-101 (2016).
  • [6] J. Favre, D. Fabregue, K. Yamanaka, A. Chiba, Mat. Sci. Eng. A. 653, 84-92 (2016).
  • [7] B. Fang, Z. Ji, M. Liu, G.F. Tian, C.C. Jia, T.T. Zeng, B.F. Hu, Y.H. Chang, Mat. Sci. Eng. A. 593, 8-15 (2014).
  • [8] J. Liu, Z. Cui, L. Ruan, Mat. Sci. Eng. A. 529, 300-310 (2011).
  • [9] H. Jiang, L. Yang, J.X. Dong, M.C. Zhang, Z.H. Yao, Mater. Design. 104, 162-173 (2016).
  • [10] G. Ji, Q. Li, L. Li, Mat. Sci. Eng. A. 586, 197-203 (2013).
  • [11] Y. Xu, L. Hu, Y. Sun, J. Alloy Compd. 580, 262-269 (2013).
  • [12] T.J. Baron, K. Khlopkov, T. Pretorius, D. Balzani, Steel Res. Int. 87, 37-45 (2016).
  • [13] M.S. Chen, Y.C. Lin, X.S. Ma, Mat. Sci. Eng. A. 556, 260-266 (2012).
  • [14] Y.M. Li, H.C. Ji, W.D. Li, Y.G. Li, W.C. Pei, J.P. Liu, Materials. 12, 89-107 (2019).
  • [15] H.C. Ji, X.M. Huang, C.J. Ma, W.C. Pei, J.P. Liu, B.Y. Wang, Metals. 8, 391-409 (2018).
  • [16] N.D. Ryan, H.J. Mcqueen, J. Mater. Process. Tech. 21, 177-199 (1990).
  • [17] E.I. Poliak, J.J. Jonas, Acta. Mater. 44, 127-136 (1996).
  • [18] D.L. Ouyang, S.Q. Lu, X. Cui, K.L. Wang, C. Wu, Rare Metal Mat. Eng. 40 (2), 325-330 (2011).
  • [19] C.Y. Sun, J.D. Luan, G. Liu, R. Li, Q.D. Zhang, Acta. Metall. Sin. 48, 853-860 (2012).
  • [20] L. Ren, J. Wu, G. Quan, Mat. Sci. Eng. A. 612, 278-286 (2014).
  • [11] G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, W.J. Song, Mat. Sci. Eng. A. 528, 8051-8059 (2011).
  • [22] C.M. Sellars, Metal Sci. 1 (4), 325-332 (2013).
  • [23] C.M. Sellars, J A Whiteman, Metal Sci. 13,187-194 (1979).
  • [24] Rios, R. Paulo, E. Villa, Mater. Sci. Forum. 753, 137-142 (2013).
  • [25] M.C. Weinberg, D.P.B. Iii, V.A. Shneidman, J. Non-Cryst. Solids. 219, 89-99 (1997).
  • [26] P. Honarmandi, M. Aghaie-Khafri, Metall. Mic. Analysis. 2, 13-20 (2013).
  • [27] V. Sencadas, C.M. Costa, J.L. Gómez-Ribelles, S. Lanceros-Mendez, J. Mater. Sci. 45, 1328-1335 (2010).
  • [28] X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, M. He, Mater. Design. 57, 568-577 (2014).
  • [29] Y.C. Lin, X.M. Chen, Mater. Design. 32, 1733-1759 (2011).
  • [30] Y.C. Lin, M.S. Chen, J. Zhong, T. Mater. Heat Treat. 1, 70-74 (2009)
Uwagi
Błędna numeracja bibliografii.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7530e456-08de-4a0d-ad2d-5935e6c99923
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.