PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Selective Laser Melting (SLM) as a Replacement for Pressure Die Casting Technology for the Production of Automotive Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selective laser melting is one of the additive manufacturing technologies that is used to produce complex-shaped components for applications in the automotive industry. The purpose of the changes in the design, technology, and material tests was to make a steering gear housing using the SLM method. The steering gear housing was produced by the pressure casting method using an AlSi9Cu3(Fe) alloy. The construction of this housing is adapted to the specifics of left-hand traffic. The change in technology was related to the change of the position of the steering system from right-hand to left-hand and the demand for a limited number of gear housings. It was necessary to make a virtual model of the housing on the basis of the part that was removed from the vehicle. In SLM technology, the AlSi10Mg aluminum alloy was used as a raw material in the form of CL 32Al gas-atomized powder. After the SLM process was completed, the housings were subjected to heat treatment. The AlSi10Mg alloy fabricated by the SLM method after heat treatment is characterized by good plasticity and an average value of tensile strength. The last stage was to check the geometry of the SLM housing with a 3D scanner. As a result, a map of the dimensional deviations from the nominal values was obtained. This data was used to modify the CAD model before the next fabrication process. The use of 3D printing technology allowed for the quick production of elements. The time to develop the technology and the production of the first two gear housings based on a 3D model was seven days.
Rocznik
Strony
9--16
Opis fizyczny
Bibliogr. 23 poz., rys., tab., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
Bibliografia
  • [1] Additive Manufacturing − General Principes − Terminology (2015). ISO/ASTM 2900:2015. BSI: London, UK.
  • [2] Frazier, W.E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance. 23, 1917-1928. DOI: 10.1007/s11665-014-0958-z.
  • [3] Sercombe, T.B. & Li, X. (2016). Selective laser melting of aluminum and aluminum metal matrix composites. Review. Materials Technology. 31(2), 77-85. DOI: 10.1179/ 1753555715Y.0000000078.
  • [4] Yadroitsev, I., Yadroitsava, I., Bertrand, P. & Smurov, I. (2012). Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyping Journal. 18(3), 201-208. DOI: 10.1108/13552541211218117.
  • [5] Olakanmi, E.O. (2013). Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. Journal of Materials Processing Technology. 213(8), 1387-1405. DOI: 10.1016/j.jmatprotec.2013.03.009.
  • [6] Gibson, I., Rosen, D.W. & Stucker, B. (2010). Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing. Springer New York Heidelberg Dordrecht London. DOI: 10.1007/978-1-4419-1120-9.
  • [7] Kempen, K., Thijs, L., Van Humbeeck, J. & Kruth, J.P. (2015). Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterization. Materials Science and Technology. 31(8), 917-923, DOI: 10.1179/1743284714Y.0000000702.
  • [8] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I. & Tuck, C.N. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing. 1-4, 77-86. DOI: 10.1016/j.addma.2014.08.001.9.
  • [9] Read, N., Wang, W. & Essa, K. & Attallah, M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design. 65, 417-424. DOI: 10.1016/ J.MATDES.2014.09.044.
  • [10] Lam, L.P., Zhang, D.Q., Liu, Z.H. & Chua, C.K. (2015). Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. Virtual and Physical Prototyping. 10 (4), 207-215. DOI: 10.1080/17452759.2015.1110868.
  • [11] EOS Material data sheet, EOS Aluminium AlSi10Mg. www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material- datasheet/aluminium/alsi10mg-9011-0024-m400_flexline_material_data_sheet_03-18_en.pdf.
  • [12] Concept Laser a GE Additive Company, CL 32 Al. Aluminium alloy. www.ge.com/additive/sites/default/files/ 2018-12/CL 32AL_DS_DE_US_v1.pdf.
  • [13] Li, W., Li, S., Liu, J., Zhang, Y., Wei, Q., Yan, C. & Shi, Y. (2016). Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Materials Science and Engineering A. 663, 116-125. DOI: 10.1016/j.msea.2016.03.088.
  • [14] Thijs, L., Kempen, K., Kurth, J.P. & Van Humbeeck, J. (2013). Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia. 61(5), 1809-1819. DOI: 10.1016/j.actamat.2012.11.052.
  • [15] Brandl, E., Heckenberger, U., Holzinger, V. & Buchbinder, D. (2012). Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Materials & Design. 34, 159-169. DOI: 10.1016/j.matdes.2011.07.067.
  • [16] Piekło, J., Garbacz-Klempka, A., Żuczek, R. & Małysza, M. (2019). Computational modeling of fracture toughness of Al-Si, and Al-Zn-Mg-Cu alloys with detected porosity. Journal of Materials Engineering and Performance. 28, 1373-1381. DOI: 10.1007/s11665-019-03899-2.
  • [17] Zych, J., Piekło, J., Maj, M., Garbacz-Klempka, A. & Piękoś, M. (2019). Influence of structural discontinuities on fatigue life of 4XXX0-series aluminum alloys. Archives of Metallurgy and Materials. 64(2), 765-771. DOI: 10.24425/amm.2019.127611.
  • [18] Leary, M., Maconachie, T., Sarker, A. & Faruque, O. (2019). Mechanical and thermal characterisation of AlSi10Mg SLM block suport structures. Materials and Design. 183(5), 108-138. DOI: 10.1016/j.matdes.2019.108138.
  • [19] EOS Material data sheet, EOS MaragingSteel MS1.www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/werkzeugstahl_ms1_cx/ms1/ms-ms1-m280_m290_400w_material_data_sheet_05-14_en.pdf
  • [20] Waszkiewicz, S., Fic, M., Perzyk, M. & Szczepanik, J. (1986). Die and pressure molds. Warszawa: WNT. (in Polish).
  • [21] Piekło, J. (2019). Application of SLM additive manufacturing method in production of selected cooling system elements in die casting molds. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
  • [22] Piekło, J. & Maj, M. (2014). Methods of additive manufacturing used in the technology of skeleton castings. Archives of Metallurgy and Materials, 2014, 59, 699-702. DOI: 10.2478/amm-2014-0114.
  • [23] Bonderek, Z. & Chromik, S. (2006). Metal pressure die-casting and plastic injection molding. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75309356-0a94-4138-a289-601dfeeeb344
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.